K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

a)

\((\sqrt{3}-2\sqrt{12}+2\sqrt{4})(\sqrt{27}+\sqrt{144}-2\sqrt{16})\)

\(=(\sqrt{3}-4\sqrt{3}+4)(3\sqrt{3}+12-8)\)

\(=(-3\sqrt{3}+4)(3\sqrt{3}+4)=4^2-(3\sqrt{3})^2=16-27=-11\)

b)

\((2\sqrt{5}+2\sqrt{3})^2-4\sqrt{60}\)

\(=(2\sqrt{5})^2+2.2\sqrt{5}.2\sqrt{3}+(2\sqrt{3})^2-8\sqrt{15}\)

\(=32+8\sqrt{15}-8\sqrt{15}=32\)

c)

\(\sqrt{6}(3\sqrt{12}-4\sqrt{3}+\sqrt{48}-5\sqrt{6})\)

\(=3\sqrt{72}-4\sqrt{18}+\sqrt{6.48}-5.\sqrt{36}\)

\(=18\sqrt{2}-12\sqrt{2}+12\sqrt{2}-30=18\sqrt{2}-30\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

d)

\((\sqrt{2}-\sqrt{3})(\sqrt{6}+\sqrt{2})(\sqrt{2}+\sqrt{3})\)

\(=(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})(\sqrt{6}+\sqrt{2})\)

\(=(2-3)(\sqrt{6}+\sqrt{2})=-(\sqrt{6}+\sqrt{2})\)

e) Biểu thức bên trong căn lớn âm nên biểu căn bậc 2 không có nghĩa

f)

\((\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}).\frac{1}{\sqrt{3}+5}\)

\(=(\frac{2\sqrt{3}+15}{3-\sqrt{3}}+\frac{3}{\sqrt{3}-2}).\frac{1}{\sqrt{3}+5}\)

\(=\frac{2\sqrt{3}+15)(\sqrt{3}-2)+3(3-\sqrt{3})}{(3-\sqrt{3})(\sqrt{3}-2)}.\frac{1}{\sqrt{3}+5}\)

\(=\frac{-15+8\sqrt{3}}{(-9+5\sqrt{3})(\sqrt{3}+5)}=\frac{-15+8\sqrt{3}}{-30+16\sqrt{3}}=\frac{-15+8\sqrt{3}}{2(-15+8\sqrt{3})}=\frac{1}{2}\)

6 tháng 8 2020

Bạn xem lại đề bài 1 và 2.b nhé !

2/ \(A=\sqrt{\left(3-5\sqrt{2}\right)^2}-\sqrt{51+10\sqrt{2}}\)

\(A=5\sqrt{2}-3-\sqrt{\left(5\sqrt{2}+1\right)^2}\)

\(A=5\sqrt{2}-3-5\sqrt{2}-1\)

\(A=-4\)

6 tháng 8 2017

\(\frac{A}{\sqrt{2}}=\frac{1+\sqrt{7}}{2+\sqrt{8+2\sqrt{7}}}+\frac{1-\sqrt{7}}{2-\sqrt{8-2\sqrt{7}}}\)

         \(=\frac{1+\sqrt{7}}{2+1+\sqrt{7}}+\frac{1-\sqrt{7}}{2-\sqrt{7}+1}\)

            \(=\frac{1+\sqrt{7}}{3+\sqrt{7}}+\frac{1-\sqrt{7}}{3-\sqrt{7}}\)

           =\(\frac{\left(1+\sqrt{7}\right)\left(3-\sqrt{7}\right)+\left(1-\sqrt{7}\right)\left(3+\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)

          \(=\frac{-8}{2}=-4\)

\(\Rightarrow A=-4\sqrt{2}\)

17 tháng 8 2020

ta có \(A=\frac{3+\sqrt{5}}{4+\sqrt{2\left(3+\sqrt{5}\right)}}=\frac{3+\sqrt{5}}{4+\sqrt{6+2\sqrt{5}}}=\frac{3+\sqrt{5}}{4+\sqrt{\left(\sqrt{5}+1\right)^2}}=\frac{\left(3+\sqrt{5}\right)}{5+\sqrt{5}}\)\(=\frac{\left(5-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{20}=\frac{5+\sqrt{5}}{10}\)

tương tự \(B=\frac{3-\sqrt{5}}{4-\sqrt{2\left(3-\sqrt{5}\right)}}=\frac{5-\sqrt{5}}{10}\)

\(\Rightarrow A-B=\frac{\sqrt{5}}{5},A+B=1;AB=\frac{1}{5}\)

vậy \(A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)=\left(A+B\right)\left[\left(A+B\right)^2-AB\right]=\frac{\sqrt{5}}{5}\left(1-\frac{1}{5}\right)\cdot\frac{4}{5}=\frac{4\sqrt{5}}{25}\)

29 tháng 3 2019

Bài 1

a) \(A=\left(4-\sqrt{15}\right)\left(\sqrt{10}+\sqrt{6}\right)\sqrt{4+\sqrt{15}}=\sqrt{\left(4-\sqrt{15}\right)\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}.\left(\sqrt{5}+\sqrt{3}\right).\sqrt{2}=\sqrt{\left(4-\sqrt{15}\right).\left(16-15\right).2}.\left(\sqrt{5}+\sqrt{3}\right)=\sqrt{8-2\sqrt{15}}\left(\sqrt{5}+\sqrt{3}\right)=\sqrt{5-2\sqrt{5}.\sqrt{3}+3}.\left(\sqrt{5}+\sqrt{3}\right)=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}.\left(\sqrt{5}+\sqrt{3}\right)=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)=5-3=2\)

Ta có công thức tổng quát\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\)

Vậy \(B=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{15}+\sqrt{16}}=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{16}-\sqrt{15}=\sqrt{16}-\sqrt{1}=4-1=3\)

b) \(6x^4-7x^2-3=0\Leftrightarrow6x^4-9x^2+2x^2-3=0\Leftrightarrow3x^2\left(2x^2-3\right)+\left(2x^2-3\right)=0\Leftrightarrow\left(2x^2-3\right)\left(3x^2+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}2x^2-3=0\\3x^2+1=0\left(ktm\right)\end{matrix}\right.\)\(\Leftrightarrow\)\(2x^2-3=0\Leftrightarrow2x^2=3\Leftrightarrow x^2=\frac{3}{2}\Leftrightarrow x=\frac{\pm\sqrt{6}}{2}\)

Vậy S={\(\frac{-\sqrt{6}}{2};\frac{\sqrt{6}}{2}\)}

NV
8 tháng 8 2020

5.

ĐKXĐ: \(-\frac{1}{2}\le x\le\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{2}-x+\frac{1}{2}+x+2\sqrt{\left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right)}=1\)

\(\Leftrightarrow\sqrt{\left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)

6.

ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x^2-1\right)\left(x^2+1\right)}\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}-\sqrt{x-1}-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\left(vn\right)\end{matrix}\right.\)

NV
8 tháng 8 2020

2.

ĐKXĐ: \(x\ge-1\)

\(\Leftrightarrow2\left(x^2+2\right)=5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)

\(\Leftrightarrow2\left(a^2+b^2\right)=5ab\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2a=b\\a=2b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+1}=\sqrt{x^2-x+1}\\\sqrt{x+1}=2\sqrt{x^2-x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+4=x^2-x+1\\x+1=4x^2-4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x-3=0\\4x^2-5x+3=0\end{matrix}\right.\) \(\Leftrightarrow...\)