K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

Mình ko ghi đề nữa nha!

a) \(=\left(5+3+1\right)xy^2\)

\(=9xy^2\)

b)\(=\left[\dfrac{1}{4}+\dfrac{2}{3}+\dfrac{-1}{2}\right]xyz\)

\(=\dfrac{5}{12}xyz\)

c)\(=\left[\dfrac{-1}{2}+\dfrac{5}{8}\right]yz^3\)

\(=\dfrac{1}{8}yz^3\)

d)\(=\left(-3-0,5+2,5\right)x^2\)

\(=-1x^2\)

\(=-x^2\)

1 kick đúng nhébanhqua

26 tháng 3 2018

Thank

30 tháng 4 2020

cảm ơn bạn nhìu

4 tháng 4 2016

Đợi tí nhé, đừng off, mk giải ra ròi, mình sẽ chép lên cho bạn

4 tháng 4 2016

theo bài ra ta có 
n = 8a +7=31b +28 
=> (n-7)/8 = a 
b= (n-28)/31 
a - 4b = (-n +679)/248 = (-n +183)/248 + 2 
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên 
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên ) 
=> n = 183 - 248d (với d là số nguyên <=0) 
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3 
=> n = 927

15 tháng 3 2019

a,-200 x10 t10z3

b,\(\frac{-5}{4}\)x11 y5 z4

c,\(\frac{2}{15}\)x6 y6 z9

d,\(\frac{1}{7}\)x10 y6 z7

e,-4z6 y10 z6

2 tháng 4 2016

\(Ta\) \(có:\)

\(A+B+C=x^2yz+xy^2z+xyz^2=xyz\left(x+y+z\right)=xyz.1=xyz\)

18 tháng 7 2018

Ta cs: \(A+B+C=x^2yz+xy^2z+xyz^2\)

\(=xyz\left(x+y+z\right)\)

Mà x+y+z=1

=>A+B+C=xyz.1=xyz(đpcm)

26 tháng 3 2018

Ko ghi đề nha!

*+ \(=\left[2.\left(\dfrac{-1}{2}\right)\right]\left(a^3b.a^2b\right)\)

\(=-a^5b^2\) Bậc là 5+2=7

+ \(=\left(2^3.\dfrac{1}{2}\right)\left(xyz.x^2yx^3\right)\)

\(=4x^3y^2z^4\) Bậc là 3+2+4=9

* a) \(=\left(-7.\dfrac{3}{7}\right)\left(x^2yz.xy^2z^3\right)\)

\(=-3x^3y^3z^4\) Bậc là 3+3+4=10

b) \(=\left[\dfrac{1}{4}.\dfrac{2}{3}.\left(\dfrac{-4}{5}\right)\right]\left(xy^2x^2y^2yz^3\right)\)

\(=\dfrac{-2}{15}x^3y^5z^3\) Bậc là 3+5+3=11

Chào người bạn cũok

26 tháng 3 2018

Ai giúp với

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

1.

\((\frac{1}{3}xy)^2.x^3+\frac{3}{2}(2x)^3(-\frac{7}{4}x^2y^2)-\frac{2}{3}x^5y^2\)

\(=(\frac{1}{9}x^2y^2)x^3+\frac{3}{2}(8x^3)(-\frac{7}{4}x^2y^2)-\frac{2}{3}x^5y^2\)

\(=\frac{1}{9}(x^2.x^3)y^2+(\frac{3}{2}.8.\frac{-7}{4})(x^3.x^2).y^2-\frac{2}{3}x^5y^2\)

\(=\frac{1}{9}x^5y^2-21x^5y^2-\frac{2}{3}x^5y^2=\frac{-194}{9}x^5y^2\)

2.

\(\frac{-2}{5}x^2y(-y^6)+\frac{3}{2}xy(\frac{-1}{15}xy^6)+(-2xy)^2y^5\)

\(=\frac{2}{5}x^2(y.y^6)+(\frac{3}{2}.\frac{-1}{15})(x.x).(y.y^6)+4x^2(y^2.y^5)\)

\(=\frac{2}{5}x^2y^7-\frac{1}{10}x^2y^7+4x^2y^7=\frac{43}{10}x^2y^7\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

3.

\(\frac{3}{7}xy^2z+\frac{1}{2}x^3y^2+\frac{1}{3}x^3y^2-\frac{3}{7}xy^2z\)

\(=(\frac{3}{7}xy^2z-\frac{3}{7}xy^2z)+(\frac{1}{2}x^3y^2+\frac{1}{3}x^3y^2)\)

\(=\frac{5}{6}x^3y^2\)

4.

\(\frac{2}{3}xy^2-\frac{5}{2}yz+\frac{1}{2}xy^2-\frac{2}{3}yz\)

\(=(\frac{2}{3}xy^2+\frac{1}{2}xy^2)-(\frac{5}{2}yz+\frac{2}{3}yz)\)

\(=\frac{7}{6}xy^2+\frac{19}{6}yz\)

5.

\(\frac{3}{2}xy^2z^5-\frac{5}{4}xyz^2+\frac{4}{3}xy^2z^5+\frac{1}{2}xyz^2\)

\(=(\frac{3}{2}xy^2z^5+\frac{4}{3}xy^2z^5)+(\frac{-5}{4}xyz^2+\frac{1}{2}xyz^2)\)

\(=\frac{17}{6}xy^2z^5-\frac{3}{4}xyz^2\)