Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2A=\frac{1}{3}-\frac{1}{31}=\frac{28}{93}\)
\(A=\frac{14}{93}\)
\(C=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{1023}\)
\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}....+\frac{1}{31\cdot33}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{31}-\frac{1}{33}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{33}\right)\)
\(=\frac{1}{2}\cdot\frac{32}{33}\)
\(=\frac{32}{66}=\frac{16}{33}\)
Vậy \(A=\frac{16}{33}\)
HOK TỐT .
\(C=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{1023}\)
\(C=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{31\cdot33}\)
\(C=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{31\cdot33}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{31}-\frac{1}{33}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{33}\right)\)
\(C=\frac{1}{2}\cdot\frac{32}{33}\)
\(C=\frac{16}{33}\)
1/3+1/15+1/35+1/63+1/99+……+1/9999
=1/(1×3)+1/(3×5)+1/(5×7)+1/(7×9)+1/(9×11)+……+1/(99×101)
=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+1/2(1/7-1/9)+1/2(1/9-1/11)+……+1/2(1/99-1/101)
=1/2(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+……+1/99-1/101)
=1/2(1-1/101)
=1/2×(100/101)
=50/101
1/3+1/15+1/35+1/63+1/99+……+1/9999
=1/(1×3)+1/(3×5)+1/(5×7)+1/(7×9)+1/(9×11)+……+1/(99×101)
=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+1/2(1/7-1/9)+1/2(1/9-1/11)+……+1/2(1/99-1/101)
=1/2(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+……+1/99-1/101)
=1/2(1-1/101)
=1/2×(100/101)
=50/101
1/1x3 + 1/3x5 + 1/5x7 + 1/7x9 +... + 1/23x25 + 1/25x27 =
1/2 x (2/1x3 + 2/3x5 + 2/5x7 +..... 2/23x25 +2/25x27 =
1/2 x (1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 +...... + 1/23 - 1/25 + 1/25 - 1/27 =
1/2 x (1 - 1/27) =
1/2 x 26/27 = 13/27
\(A=\frac{1}{1.3}+\frac{1}{3.5}+....+\frac{1}{21.23}\)
A=\(\frac{1}{3}\left(1-\frac{1}{3}+\frac{1}{3}-.......-\frac{1}{23}\right)\)=\(\frac{1}{3}.\frac{22}{23}=\frac{22}{69}\)
hok t
tl lại
\(A=\frac{1}{1.3}+....\frac{1}{21.23}\)
\(A=\frac{1}{2}\left(1-\frac{1}{3}+.....+\frac{1}{21}-\frac{1}{23}\right)\)
\(A=\frac{1}{2}.\frac{22}{23}=\frac{11}{23}\)
k t nha
Giải:
Đặt A = 1/3+1/15+1/35+1/63+1/99+1/143+1/195
2A= 2/(1.3) + 2/(3.5) + 2/(5.7) + 2/(7.9)+2/(9.11) + 2/(11.13)+2/(13.15)
2A=1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9...
2A=1/1-1/15=14/15
Vậy A=14/15 : 2 = 7/15
Nhấn đúng mk nha Tran Dan
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+..+\frac{1}{143}+\frac{1}{195}\)
=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{13.15}\)
= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+..+\frac{1}{13}-\frac{1}{15}\)
= \(1-\frac{1}{15}=\frac{14}{15}\)
tick đúng nha
#)Giải :
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{y\left(y+2\right)}=\frac{50}{101}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{y\left(y+2\right)}=\frac{50}{101}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{y}-\frac{1}{y+2}=\frac{50}{101}\)
\(1-\frac{1}{y+2}=\frac{50}{101}\)
\(\Leftrightarrow\frac{1}{y+2}=\frac{51}{101}\)
\(\Leftrightarrow y+2=\frac{101}{51}\)
\(\Leftrightarrow x=-\frac{1}{51}\)
Đặt A = 1 / 3 + 1 / 15 + 1 / 35 + 1 / 63 + 1 / 99 + 1 / 143 + 1 / 195
A = 1 / 1 x 3 + 1 / 3 x 5 + 1 / 5 x 7 +1 / 7 x 9 + 1 / 9 x 11 + 1 / 11 x 13 + 1 / 13 x 15
A x 2 = 2 / 1 x 3 + 2 / 3 x 5 +2/ 5 x 7 + 2/ 7 x 9 + 2 / 9 x 11 + 2/ 11 x 13 +2 / 13 x 15
A x 2 = 1 / 1 - 1 / 3 + 1 / 3 - 1 /5 + 1 / 5 - 1 / 7 + 1 / 7 - 1 / 9 + 1 / 9 - 1 / 11 + 1 / 11 - 1 / 13 + 1 / 13 - 1 / 15
A x 2 = 1 / 1 - 1 / 15
A x 2 = 14 / 15
A = 7 / 15
=1/3+1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15
=1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13+1/13-1/15
=1-1/15
=14/15
vậy đáp số là 14/15
= 1/1.3+1/3.5+....+1/11.13
= 1-1/3+1/3-1/5+....+1/11-1/13 = 1-1/13 = 12/13
k mk nha
\(A=\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+...+\dfrac{1}{899}\\ 2A=2\cdot\dfrac{1}{3}+2\cdot\dfrac{1}{15}+2\cdot\dfrac{1}{35}+2\cdot\dfrac{1}{63}+...+2\cdot\dfrac{1}{899}\\ 2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{29}-\dfrac{1}{31}\\ 2A=1-\dfrac{1}{31}\\ 2A=\dfrac{30}{31}\\ A=\dfrac{30}{31}\div2\\ A=\dfrac{30}{31\cdot2}=\dfrac{15}{31}\)
:))