K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

\(x-\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}-...-\dfrac{1}{49\cdot50}=\dfrac{25}{13}\\ x-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{49\cdot50}\right)=\dfrac{25}{13}\\ x-\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=\dfrac{25}{13}\\ x-\left(1-\dfrac{1}{50}\right)=\dfrac{25}{13}\\ x-\dfrac{49}{50}=\dfrac{25}{13}\\ x=\dfrac{25}{13}+\dfrac{49}{50}\\ x=\dfrac{1887}{650}\)

AH
Akai Haruma
Giáo viên
3 tháng 12 2017

Lời giải:

Ta có:

\(\frac{1}{1.2^2}=\frac{1}{2^2}\)

\(2.3^2>3^2\Rightarrow \frac{1}{2.3^2}< \frac{1}{3^2}\)

\(3.4^2> 4^2\Rightarrow \frac{1}{3.4^2}< \frac{1}{4^2}\)

...........

\(49.50^2> 50^2\Rightarrow \frac{1}{49.50^2}< \frac{1}{50^2}\)

Cộng theo từng vế các BĐT:

\(\Rightarrow \frac{1}{1.2^2}+\frac{1}{2.3^2}+\frac{1}{3.4^2}+....+\frac{1}{49.50^2}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}\)

\(\Leftrightarrow A< B\)

Vậy ta có đpcm.

26 tháng 7 2017

a, \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{99}{100!}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)

\(\Rightarrowđpcm\)

d, \(D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3D=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)

\(\Rightarrow3D-D=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)

\(\Rightarrow2D=1-\dfrac{1}{3^{99}}\)

\(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}< \dfrac{1}{2}\)

\(\Rightarrowđpcm\)

26 tháng 7 2017

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

\(\Rightarrowđpcm\)

24 tháng 3 2017

Ta thấy:

\(1\cdot2^2=2^2;2\cdot3^2>3^2;3\cdot4^2>4^2;...;49\cdot50^2>50^2\)

\(\Rightarrow\dfrac{1}{1.2^2}=\dfrac{1}{2^2};\dfrac{1}{2\cdot3^2}< \dfrac{1}{3^2};\dfrac{1}{3\cdot4^2}< \dfrac{1}{4^2};...;\dfrac{1}{49\cdot50^2}< \dfrac{1}{50^2}\)

\(\Rightarrow\dfrac{1}{1\cdot2^2}+\dfrac{1}{2\cdot3^2}+\dfrac{1}{3\cdot4^2}+...+\dfrac{1}{49\cdot50^2}< \dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)

hay A<B

Vậy A<B

2 tháng 3 2017

Ta có:

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=1-\dfrac{1}{50}\)

\(\Rightarrow A=\dfrac{49}{50}\)

Vậy \(A=\dfrac{49}{50}.\)

2 tháng 3 2017

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A=1-\dfrac{1}{50}=\dfrac{49}{50}\)

10 tháng 1 2018

a,

\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)+\sqrt{2}\cdot\dfrac{\sqrt{2^5}}{1-\sqrt{9}}\)

\(=2^2-\left(\sqrt{3}\right)^2+\dfrac{\sqrt{2}\cdot\sqrt{2^5}}{1-3}=4-3+\dfrac{\sqrt{2^6}}{-2}=1+\dfrac{8}{-2}=1+\left(-4\right)=-3\)

b,

\(\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{49\cdot50}\right)\cdot\dfrac{49}{50}\)

\(=\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\cdot\dfrac{49}{50}\)

\(=\left(1-\dfrac{1}{50}\right)\cdot\dfrac{49}{50}=\dfrac{49}{50}\cdot\dfrac{49}{50}=\dfrac{49^2}{50^2}=\dfrac{2401}{2500}\)

10 tháng 1 2018

Cảm ơn bạn

10 tháng 9 2017

ngu như con bò tót, ko biết 1+1=2.

6 tháng 7 2017

a, \(\dfrac{3}{5}-4.\left|\dfrac{1}{5}-\dfrac{3}{4}x\right|=\dfrac{1}{3}\)

\(\Rightarrow4\left|\dfrac{1}{5}-\dfrac{3}{4}x\right|=\dfrac{4}{15}\)

\(\Rightarrow\left|\dfrac{1}{5}-\dfrac{3}{4}x\right|=\dfrac{1}{15}\)

\(\Rightarrow\dfrac{1}{5}-\dfrac{3}{4}x\in\left\{-\dfrac{1}{15};\dfrac{1}{15}\right\}\)

\(\Rightarrow\dfrac{3}{4}x\in\left\{\dfrac{4}{15};\dfrac{2}{15}\right\}\Rightarrow x\in\left\{\dfrac{16}{45};\dfrac{8}{45}\right\}\)

b, \(\left|2\dfrac{2}{9}-x\right|=\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\)

\(\Rightarrow\left|2\dfrac{2}{9}-x\right|=\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}\)

\(\Rightarrow\left|2\dfrac{2}{9}-x\right|=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+....+\dfrac{1}{8}-\dfrac{1}{9}\)

(do \(\dfrac{1}{a.\left(a+1\right)}=\dfrac{1}{a}-\dfrac{1}{a+1}\) với mọi \(a\in N\)*)

\(\Rightarrow\left|2\dfrac{2}{9}-x\right|=\dfrac{1}{3}-\dfrac{1}{9}\)

\(\Rightarrow\left|2\dfrac{2}{9}-x\right|=\dfrac{2}{9}\Rightarrow2\dfrac{2}{9}-x\in\left\{-\dfrac{2}{9};\dfrac{2}{9}\right\}\)

\(\Rightarrow x\in\left\{\dfrac{22}{9};2\right\}\)

c,\(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)

\(\Rightarrow\dfrac{1}{3}x+\dfrac{2}{5}x-\dfrac{2}{5}=0\)

\(\Rightarrow\dfrac{11}{15}x=\dfrac{2}{5}\Rightarrow x=\dfrac{6}{11}\)

d, \(60\%x+\dfrac{2}{3}x=\dfrac{1}{3}.6\dfrac{1}{3}\)

\(\Rightarrow\dfrac{3}{5}x+\dfrac{2}{3}x=\dfrac{1}{3}.\dfrac{19}{3}\)

\(\Rightarrow\dfrac{19}{15}x=\dfrac{19}{9}\Rightarrow x=\dfrac{5}{3}\)

Chúc bạn học tốt!!!

6 tháng 7 2017

bạn giúp mình câu cuối cùng với