K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2016

Phải là 99.10 ko bạn?

Ta có:S=9.11+99.101+999.1001+...+99999.100001

            =99+9999+999999+...+9999999999

Ta thấy:\(99=10^2-1;9999=10^4-1;999999=10^6-1\)

           \(\Rightarrow S=\left(10^2+10^4+10^6+...+10^{10}\right)-\left(1.10\right)\)

                \(S=10101010100-10\)

                 \(S=10101010090\)

23 tháng 7 2016

Sorry mình lộn:

  \(S=\left(10^2+10^4+10^6+...+10^{10}\right)-\left(1.5\right)\)

    \(=10101010100-5\)

    \(=10101010095\)

30 tháng 8 2020

Bg

Ta có: S = \(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{93.95}\)

=> S = \(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)

=> S = \(\frac{1}{5}-\frac{1}{95}\)

=> S = \(\frac{19}{95}-\frac{1}{95}\)

=> S = \(\frac{18}{95}\)

Vậy S = \(\frac{18}{95}\)

30 tháng 8 2020

\(S=\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+...+\frac{2}{93\cdot95}\)

\(S=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)

\(S=\left(\frac{1}{5}-\frac{1}{95}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)+...+\left(\frac{-1}{93}+\frac{1}{93}\right)\)

\(S=\left(\frac{1}{5}-\frac{1}{95}\right)\)

\(S=\frac{19}{95}-\frac{1}{95}\)

\(S=\frac{18}{95}\)

3 tháng 11 2015

\(\frac{\left(101-1\right).101.\left(101+1\right)}{3}\)

11 tháng 9 2016

\(S2=\left(\frac{1}{3}-\frac{1}{1001}\right):2=\frac{499}{3003}\)

11 tháng 9 2016

\(S2=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{999.1001}\)

\(S2=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)

\(S2=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)

\(S2=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)

\(S2=\frac{1}{2}.\frac{998}{3003}=\frac{499}{3003}\)

7 tháng 8 2020

Trả lời :

\(E=-\left(\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{n\left(n+4\right)}\right)\)

\(\Rightarrow E=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n}-\frac{1}{n+4}\right)\)

\(\Rightarrow E=-\left(1-\frac{1}{n+4}\right)\)

\(\Rightarrow E=1+\frac{1}{n+4}\)

P/s : Sai thì thông cảm nha chị. Dạng này lâu chưa làm nên không nhớ rõ.

7 tháng 8 2020

\(E=-\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.11}-...-\frac{4}{\left(n-4\right)n}\)

\(\Rightarrow E=-\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.11}+...+\frac{4}{\left(n-4\right)n}\right)\)

\(\Rightarrow E=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)

\(\Rightarrow E=-\left(1-\frac{1}{n}\right)\)

\(\Rightarrow E=-1+\frac{1}{n}\)

12 tháng 9 2016

Bài 1:

a) (2x-3). (x+1) < 0

=>2x-3 và x+1 ngược dấu

Mà 2x-3<x+1 với mọi x

\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)

\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)

b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)

\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu

Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)

Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)

=>....

Bài 2:

\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)

\(=\frac{1}{2}\cdot\frac{998}{3003}\)

\(=\frac{499}{3003}\)

 

 

13 tháng 9 2016

tự làm nhé. bài cô Kiều cho dễ mừ :)