Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1/5.6 + 1/10.9+....+ 1/3350.2013
=1/5 . 1/3 .( 1/2+ 1/2.3 + 1/3.4 +... + 1/670.671)
=1/15. ( 1-1/2 + 1/2 - 1/3+...+ 1/670-1/671)
= 1/15 .( 1 - 1/671 )
= 1/15 .670/671
=134/2013
S = 1/5.6 + 1/10.9+....+ 1/3350.2013
=1/5 . 1/3 .( 1/2+ 1/2.3 + 1/3.4 +... + 1/670.671)
=1/15. ( 1-1/2 + 1/2 - 1/3+...+ 1/670-1/671)
= 1/15 .( 1 - 1/671 )
= 1/15 .670/671
=134/2013
S = 1/5.6 + 1/10.9+....+ 1/3350.2013
=1/5 . 1/3 .( 1/2+ 1/2.3 + 1/3.4 +... + 1/670.671)
=1/15. ( 1-1/2 + 1/2 - 1/3+...+ 1/670-1/671)
= 1/15 .( 1 - 1/671 )
= 1/15 .670/671
=134/2013
S = \(\frac{1}{5.6}+\frac{1}{10.9}+\frac{1}{15.12}+...+\frac{1}{3350.2013}=\frac{1}{5.3}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{670.671}\right)\)
\(=\frac{1}{15}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{670}-\frac{1}{671}\right)=\frac{1}{15}\left(1-\frac{1}{671}\right)=\frac{1}{15}.\frac{670}{671}\)
\(=\frac{134}{2013}\)
\(\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)
\(=\frac{4}{3}\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+\frac{3}{12.15}\right)\)
\(=\frac{4}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\right)\)
\(=\frac{4}{3}\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{4}{3}.\frac{4}{15}=\frac{16}{45}\)
1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10
=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6+1/7-1/7+1/8-1/8+1/9+1/9-1/10
=1/2-1/10
=5/10-1/10
=4/10=2/5
\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}+\frac{1}{8x9}+\frac{1}{9x10}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(\frac{1}{2}-\frac{1}{10}\)
\(\frac{2}{5}\)
\(A=\frac{2\cdot9\cdot8+3\cdot12\cdot10+4\cdot15\cdot12+...+98\cdot297\cdot200}{2\cdot3\cdot4+3\cdot4\cdot5+4\cdot5\cdot6+...+98\cdot99\cdot100}\)
\(=\frac{2\cdot1\cdot3\cdot3\cdot4\cdot2+3\cdot1\cdot4\cdot3\cdot5\cdot2+...+98\cdot1+99\cdot3+100\cdot2}{2\cdot3\cdot4+3\cdot4\cdot5+...+98\cdot99\cdot100}\)
\(=\frac{1\cdot3\cdot2\cdot\left(2\cdot3\cdot4+3\cdot4\cdot5+...+98\cdot99\cdot100\right)}{2\cdot3\cdot4+3\cdot4\cdot5+...+98\cdot99\cdot100}\)
\(=1\cdot3\cdot2\)
\(=6\)
\(A^2=6^2=36\)
\(C=\frac{1.5.6+2.10.12+24.8.10}{1.3.5+2.6.10+8.6.20}\)
\(C=\frac{1.5.6.\left(1^3+2^3+8^2\right)}{1.3.5.\left(1^3+2^3+8^2\right)}=\frac{6}{3}=2\)
Ta có: \(\frac{1}{4\times6}=\frac{1}{4\times1\times3\times2}=\frac{1}{4\times3\times1\times2}\)
\(\frac{1}{8\times9}=\frac{1}{4\times2\times3\times3}=\frac{1}{4\times3\times2\times3}\)
\(\frac{1}{12\times12}=\frac{1}{4\times3\times3\times4}\)
\(\frac{1}{16\times15}=\frac{1}{4\times4\times3\times5}=\frac{1}{4\times3\times4\times5}\)......
\(\frac{1}{2680\times2013}=\frac{1}{4\times670\times3\times671}\)
Do đó:
\(M=\frac{1}{4\times3}\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+....+\frac{1}{670\times671}\right)\)
\(=\frac{1}{12}\times\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{670}-\frac{1}{671}\right)\)
\(=\frac{1}{12}\times\left(\frac{1}{1}-\frac{1}{671}\right)=\frac{1}{12}\times\frac{670}{671}=\frac{335}{4026}\)
Vậy \(M=\frac{335}{4026}\)