Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/8+1/24+1/48+1/80+1/120+1/168+1/224=>2A=2/8+2/24+2/48+2/80+2/120+2/168+2/224
2A=2/2*4+2/4*6+2/6*8+2/8*10+2/10*12+2/12*14+2/14*16
2A=1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10+1/10-1/12+1/12-1/14+1/14-1/16
2A=1/2-1/16
2A=7/16
A=7/16:2
A=7/32
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{110}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{10\cdot11}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
Đặt\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{42}...+\frac{1}{110}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{10.11}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{10}-\frac{1}{11}\)
\(S=1-\frac{1}{11}\)
\(S=\frac{11}{11}-\frac{1}{11}=\frac{10}{11}\)
Có phân số \(\frac{1}{20}\) không bạn nếu có thì mới logic :)))
\(a,=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-0-0-0-...-0-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}\)
\(=\frac{4}{8}-\frac{1}{8}\)
\(=\frac{3}{8}\)
\(b,=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{49}+\frac{1}{49}-\frac{1}{16}\)
\(=1-0-0-0-...-0-\frac{1}{16}\)
\(=1-\frac{1}{16}\)
\(=\frac{15}{16}\)
\(c,\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{51}\right)\)
\(=\frac{3}{2}.\left(1-0-0-0-...-\frac{1}{51}\right)\)
\(=\frac{3}{2}.\frac{50}{51}\)
\(=\frac{25}{17}\)
\(d,\)giống câu a tự làm nha mỏi tay quá.
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}.\)
=> \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
=> \(A=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(B=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{49.52}=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{49}-\frac{1}{52}\)
=> \(B=\frac{1}{4}-\frac{1}{52}=\frac{24}{104}=\frac{1}{26}\)
a,Ta có: \(\frac{3}{10}=\frac{3}{10};\frac{3}{11}< \frac{3}{10};\frac{3}{12}< \frac{3}{10};\frac{3}{13}< \frac{3}{10};\frac{3}{14}< \frac{3}{10}\)
\(\Rightarrow S< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}=\frac{3}{2}=1,5\left(1\right)\)
Lại có: \(\frac{3}{10}>\frac{3}{15};\frac{3}{11}>\frac{3}{15};\frac{3}{12}>\frac{3}{15};\frac{3}{13}>\frac{3}{15};\frac{3}{14}>\frac{3}{15}\)
\(\Rightarrow S>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\left(2\right)\)
Từ (1) và (2) => 1 < S < 1,5
Vậy...
b, \(A=\frac{1}{61}+\frac{1}{62}+...+\frac{1}{100}\)
\(=\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)+\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)
Ta có: \(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};...;\frac{1}{80}=\frac{1}{80}\)
\(\Rightarrow\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}=\frac{20}{80}=\frac{1}{4}\left(1\right)\)
Lại có: \(\frac{1}{81}>\frac{1}{100};\frac{1}{82}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{20}{100}=\frac{1}{5}\left(2\right)\)
Từ (1) và (2) => \(A>\frac{1}{4}+\frac{1}{5}=\frac{9}{20}\)
Vậy...
Bài 1 mik học xong quên hết òi (mấy bài kia là hok biết luôn :V)
ta có 1/3=10/30
1/21+1/22+...+1/30 có 10 p/số
mà 1/21>1/30
1/22>1/30
....
1/29>1/30
1/30=1/30
=>1/21+..1/30>1/30+....1/30 có 10 phân số
=>1/21+...1/30>1/3