K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

cho mk một tk đi bà con ơi

ủng hộ mk đi làm ơn

30 tháng 3 2017

1/1.4 + 1/4.7 + 1/7.10 + ... + 1/35.38

= 1/3 ( 1/1 - 1/4 + 1/4 - 1/7 + 1/7 - ... - 1/35 + 1/35 - 1/38)

= 1/3 ( 1- 1/38 )

= 1/3 . 37/38

= 37/114

k cho mình nha mí bạn

21 tháng 6 2017

Võ Thiện Tuấn viết tổng quát kết quả hay phép đề bài hả bạn ?

21 tháng 6 2017

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7} +....+\frac{1}{100}-\frac{1}{103}\)

\(=1-\frac{1}{103}\)

\(=\frac{102}{103}\)

24 tháng 3 2019

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+.....+\frac{1}{97.100}=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-.......+\frac{1}{97}-\frac{1}{100}\right)=\frac{1}{3}\left(1-\frac{1}{100}\right)=\frac{1}{3}.\frac{99}{100}=\frac{33}{100}\)

24 tháng 3 2019

Gọi dãy phân số trên là A

A = \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)

A = \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)

A = \(1-\frac{1}{100}\)

A = \(\frac{99}{100}\)

4 tháng 8 2015

\(A=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+...+\frac{1}{91\cdot94}=\frac{1}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{91\cdot94}\right)\)

\(=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{91}-\frac{1}{94}\right)\)

\(=\frac{1}{3}\left[\left(1-\frac{1}{94}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{91}-\frac{1}{91}\right)\right]\)

\(=\frac{1}{3}\left[\left(\frac{94}{94}-\frac{1}{94}\right)+0+...+0\right]=\frac{1}{3}\cdot\frac{93}{94}=\frac{93}{282}\)

20 tháng 8 2017

\(S=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+...+\frac{1}{2002\cdot2005}\)

\(3S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{2002\cdot2005}\)

\(3S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2002}-\frac{1}{2005}\)

\(3S=\frac{1}{1}-\frac{1}{2005}\)

\(3S=\frac{2004}{2005}\)

\(S=\frac{2004}{2005}\div3=\frac{668}{2005}\)

20 tháng 8 2017

Ta có:

\(S=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2002.2005}\)

\(\Rightarrow S=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2002.2005}\right)\)

\(\Rightarrow S=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2002}-\frac{1}{2005}\right)\)

\(\Rightarrow S=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{2005}\right)=\frac{1}{3}.\frac{2004}{2005}=\frac{668}{2005}\)

27 tháng 4 2016

Ta thấy: 1/1-1/4 = 3/4 = 3.(1/1.4)

           1/4-1/7 = 3/28 = 3.(1/4.7)

A = 3(1/1-1/4+1/4-1/7+...+1/97-1/100)

A = 3.(1-1/100)

A = 3.(99/100)

A = 297/100

27 tháng 4 2016

\(A=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{1}{3}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{1}{3}.\frac{99}{100}\)

\(A=\frac{33}{100}\)

25 tháng 1 2017

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(\Rightarrow\frac{99}{100}=\frac{0.33.x}{2009}\)

\(\Rightarrow100.0.33.x=99.2009\)

\(\Rightarrow0x=198891\Rightarrow\)không có GT x thỏa mãn

18 tháng 4 2019

Pk bt tổng này bằng bao nhiêu ms tính đc chứ

18 tháng 4 2019

3. ( 1/1.4 +1/4.7 +1/7.10 +...+ 1/x.(x+3)

3/1.4 +1/4.7+1/7.10 + ...+ 3/ x . (x+3)

1/1 - 1/4 + 1/4 - 1/6 + 1/7 - 1/10 + ...+ 1/x-1/x+3

1/1 - 1/x+3

x+3/x+3 - 1/x+3

x+2/x+3

17 tháng 7 2018

Ta có : 1/ 1.4 + 1/ 4.7 + .... + 1/ 2016.2019 .

      = 1 - 1/4 + 1/4 - 1/7 + ... + 1/2016 - 1/2019 .

      = 1 - 1/2019 .

      = 2018/2019 .

17 tháng 7 2018

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2016.2019}\)

\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2016.2019}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2016}-\frac{1}{2019}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{2019}\right)\)

\(=\frac{1}{3}.\frac{2018}{2019}\)

\(=\frac{2018}{6057}\)

_Chúc bạn học tốt_

21 tháng 5 2018

\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{95\cdot98}\)

\(A=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{95\cdot98}\right)\)

\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}\cdot\frac{48}{98}\)

\(A=\frac{16}{98}=\frac{8}{49}\)

\(B=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)

\(B=2\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{97\cdot100}\right)\)

\(B=2\left[\frac{1}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{97\cdot100}\right)\right]\)

\(B=2\left[\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\right]\)

\(B=2\left[\frac{1}{3}\left(1-\frac{1}{100}\right)\right]\)

\(B=2\left[\frac{1}{3}\cdot\frac{99}{100}\right]\)

\(B=2\cdot\frac{33}{100}\)

\(B=\frac{33}{50}\)

21 tháng 5 2018

A = \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)

3A = 3/2.5 + 3/5.8 + 3/8.11 + ... + 3/92.95 + 3/95.98

3A = 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/92 - 1/95 + 1/95 - 1/98

3A = 1/2 - 1/98

3A = 24/49

A = 24/49 : 3

A = 72/49

B = 2/1.4 + 2/4.7 + 2/7.10 + ... + 2/97.100

3/2B = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/97.100

3/2B = 1/1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/97 - 1/100

3/2B = 1 - 1/100

3/2B = 99/100

B = 99/100 : 3/2

B = 33/50