Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.........+\frac{1}{2^{2016}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{2016}}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{2016}}\)
\(\Rightarrow A=1-\frac{1}{2^{2016}}\)
1)
a)Không chia hết vì 2016 chia hết cho 2 nhưng 2013 không chia hết cho 2 =>2016+2013 không chia hết cho 2
b)Không chia hết vì 20162015 chia hết cho 2(tận cùng là 1 số chẵn) nhưng 20152016 không chia hết cho 2(tận cùng là 5) => 20152016 + 20162015 không chia hết cho 2
2)
a) Thiếu
Sửa lại đề: A= 5+7+9+11+13+15+17+19+...+83
Có (83-5):2+1 = 40 số hạng
Tổng là:
(83+5).40:2=1760
Vậy A = 1760
b)B = 1+2+22+23+...240
2B= 2+22+23+24+...+241
2B-B=241-1
Vậy B=241-1
Bài 1:
a) Đặt A = 1 + 7 + 72 + 73 + ... + 72016
7A = 7 + 72 + 73 + 74 + ... + 72017
7A - A = (7 + 72 + 73 + 74 + ... + 72017) - (1 + 7 + 72 + 73 + ... + 72016)
6A = 72017 - 1
\(A=\frac{7^{2017}-1}{6}\)
b) Đặt B = 1 + 4 + 42 + 43 + ... + 42017
4B = 4 + 42 + 43 + 44 + ... + 42018
4B - B = (4 + 42 + 43 + 44 + ... + 42018) - (1 + 4 + 42 + 43 + ... + 42017)
3B = 42018 - 1
\(B=\frac{4^{2018}-1}{3}\)
Bài 2:
a) Ta có: \(14\equiv1\left(mod13\right)\)
\(\Rightarrow14^{14}\equiv1\left(mod13\right)\)
\(\Rightarrow14^{14}-1⋮13\left(đpcm\right)\)
b) Ta có: \(2015\equiv1\left(mod2014\right)\)
\(\Rightarrow2015^{2015}\equiv1\left(mod2014\right)\)
\(\Rightarrow2015^{2015}-1⋮2014\left(đpcm\right)\)
Sorry mình thiếu 1+7+72+73+...+72016 câu dưới cũng thiếu 4 nha
\(\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot..\cdot\left(\frac{1}{10^2}-1\right)\)
\(=\left(\frac{1}{2}\cdot\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}\cdot\frac{1}{3}-1\right)\cdot...\cdot\left(\frac{1}{10}\cdot\frac{1}{10}-1\right)\)
\(=\left(\frac{1}{4}-1\right)\cdot\left(\frac{1}{9}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\)
\(=\frac{-3}{4}\cdot\frac{-8}{9}\cdot...\cdot\frac{-99}{100}\)
\(=\frac{\left(-1\right).\left(-3\right)}{2.2}\cdot\frac{\left(-2\right).\left(-4\right)}{3.3}\cdot...\cdot\frac{\left(-9\right).\left(-11\right)}{10.10}\)
\(=\frac{\left(-1\right).\left(-2\right)....\left(-9\right)}{2.3....10}\cdot\frac{\left(-3\right).\left(-4\right)....\left(-11\right)}{2.3.....10}\)
\(=\frac{-1}{10}\cdot\frac{-11}{2}=\frac{-11}{20}\)
1/2.3 +1/3.4+...+1/2016.2017 < 1/2^2+1/3^2+...+1/2016^2
1/2 -1/3+1/3 -1/4+...+1/2016-1/2017 < 1/2^2+1/3^2+...+1/2016^2
1/2-1/2017 < 1/2^2+1/3^2+...+1/2016^2
=> 2015/4034 < 1/2^2+1/3^2+...+1/2016^2
tương tự
1/2^2+1/3^2+...+1/2016^2 < 1/1.2 +1/2.3+...+1/2015.2016
1/2^2+1/3^2+...+1/2016^2 < 1- 1/2+1/2 -1/3+...+1/2015- 1/2016
1/2^2+1/3^2+...+1/2016^2 < 1-1/2016
1/2^2+1/3^2+...+1/2016^2 < 2015/2016
tích nha
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)
\(\Rightarrow\)\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\)
\(\Rightarrow\)\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)
\(\Rightarrow\)\(A=1-\frac{1}{2^{2016}}\)