Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{\sqrt{3}-1}{3-1}+\frac{\sqrt{5}-\sqrt{3}}{5-3}+\frac{\sqrt{7}-\sqrt{5}}{7-5}+...+\frac{\sqrt{2019^2}-\sqrt{2019^2-2}}{2019^2-\left(2019^2-2\right)}\)
\(S=\frac{\sqrt{3}-1}{2}+\frac{\sqrt{5}-\sqrt{3}}{2}+\frac{\sqrt{7}-\sqrt{5}}{2}+...+\frac{\sqrt{2019^2}-\sqrt{2019^2-2}}{2}\)
\(S=\frac{1}{2}\left(\sqrt{3}-1+\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+...+\sqrt{2019^2}-\sqrt{2019^2-2}\right)\)
\(S=\frac{1}{2}\left(-1+\sqrt{2019^2}\right)\)
\(S=\frac{\left(2019-1\right)}{2}=1009\)
\(S=\frac{1-\sqrt{3}}{1-3}+\frac{\sqrt{3}-\sqrt{5}}{3-5}+\frac{\sqrt{5}-\sqrt{7}}{5-7}+...+\frac{2019-\sqrt{2019^2-2}}{2019^2-2019^2-2}.\)
\(S=\frac{1-\sqrt{3}}{-2}+\frac{\sqrt{3}-\sqrt{5}}{-2}+\frac{\sqrt{5}-\sqrt{7}}{-2}+...+\frac{2019-\sqrt{2019^2-2}}{-2}.\)
\(-2S=1-\sqrt{3}+\sqrt{3}-\sqrt{5}+\sqrt{5}...+2019-\sqrt{2019^2-2}\)
\(-2S=1-\sqrt{2019^2-2}\Rightarrow S=\frac{\sqrt{2019^2-2}-1}{2}\)
Cách giải dạng toán này như sau: Ta thấy: 1/2 = 1 - 1/2
1/2 + 1/4 = 3/4 = 1- 1/4
1/2 + 1/4 + 1/8 = 7/8 = 1 - 1/8
Tương tự ta có:
1/2 + 1/4 +1/8 + 1/16 + 1/32 + 1/64 + 1/128 = 1 - 1/128 = 127/128.
\(\hept{\begin{cases}\frac{1}{x-2}+\frac{5}{2y-1}=3\\\frac{3}{x-2}-\frac{1}{2y-1}=1\end{cases}\left(x\ne2,y\ne\frac{1}{2}\right)}\)
Dật \(u=\frac{1}{x-2},v=\frac{1}{2y-1}\)ta có
\(\hept{\begin{cases}u+5v=3\\3u-v=1\end{cases}\Leftrightarrow}\hept{\begin{cases}u+5v=3\\15u-5v=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}16u=8\\u+5v=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}u=\frac{1}{2}\\5v=\frac{5}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}u=\frac{1}{2}\\v=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x-2}=\frac{1}{2}\\\frac{1}{2y-1}=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2=2\\2y-1=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\left(TM\right)\\y=\frac{3}{2}\left(TM\right)\end{cases}}\)
Vậy hệ phương trình có nghiệm \(\left(x,y\right)=\left(4,\frac{3}{2}\right)\)
a) \(x^2=5\Leftrightarrow\left[\begin{array}{nghiempt}x=\sqrt{5}\approx2,236\\x=-\sqrt{5}\approx-2,236\end{array}\right.\)
b)Sai đề
c) \(x^2=2,5\Leftrightarrow\left[\begin{array}{nghiempt}x=\sqrt{2,5}\approx1,581\\x=-\sqrt{5}\approx-1,581\end{array}\right.\)
d) \(x^2=\sqrt{5}\Leftrightarrow\left[\begin{array}{nghiempt}x=\sqrt{\sqrt{5}}\approx1,495\\x=-\sqrt{\sqrt{5}}\approx-1,495\end{array}\right.\)
\(A=\frac{2^{2019}}{2^{2020}-1}=\frac{1}{2}\left(\frac{2^{2020}-1+1}{2^{2020}-1}\right)=\frac{1}{2}\left(1+\frac{1}{2^{2020}-1}\right)\)
\(B=\frac{3^{2019}}{3^{2020}-1}=\frac{1}{3}\left(1+\frac{1}{3^{2020}-1}\right)< \frac{1}{2}\left(1+\frac{1}{3^{2020}-1}\right)< \frac{1}{2}\left(1+\frac{1}{2^{2020}-1}\right)\)
\(\Rightarrow B< A\)