Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+.....+\dfrac{3}{97.100}\)
\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+....+\dfrac{1}{97}-\dfrac{1}{100}\)
(do \(\dfrac{n}{a.\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với mọi \(a\in N\)*)
\(S=1-\dfrac{1}{100}=\dfrac{99}{100}\)
Vậy \(S=\dfrac{99}{100}\)
Chúc bạn học tốt!!!
Ta có:
\(S=\dfrac{3}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{43}-\dfrac{1}{46}\right)\)
\(S=1.\left(\dfrac{1}{1}-\dfrac{1}{46}\right)\)
\(S=1.\dfrac{45}{46}=\dfrac{45}{46}\)
Vì \(\dfrac{45}{46}< \dfrac{46}{46}\) nên \(\dfrac{45}{46}< 1\).
Vậy S < 1.
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{43.46}\)
\(S=\dfrac{3}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{43.46}\right)\)
Ta thấy:
\(\dfrac{3}{1.4}=1-\dfrac{1}{4};\dfrac{3}{4.7}=\dfrac{1}{4}-\dfrac{1}{7};\dfrac{3}{7.10}=\dfrac{1}{7}-\dfrac{1}{10};\)
\(...;\dfrac{3}{43.46}=\dfrac{1}{43}-\dfrac{1}{46}\)
\(\Rightarrow S=1\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{43}-\dfrac{1}{46}\right)\)
\(\Rightarrow S=1\left(1-\dfrac{1}{46}\right)\)
\(\Rightarrow S=1.\dfrac{45}{46}=\dfrac{45}{46}\)
a, \(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{37.39}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{39}\)
\(=\dfrac{1}{3}-\dfrac{1}{39}\)
\(=\dfrac{12}{39}\)
Vậy \(A=\dfrac{12}{39}\)
b,\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{73.76}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{73}-\dfrac{1}{76}\)
\(=1-\dfrac{1}{76}\)
\(=\dfrac{75}{76}\)
Vậy \(B=\dfrac{75}{76}\)
a) Ta có :
\(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+....................+\dfrac{2}{37.39}\)
\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...................+\dfrac{1}{37}-\dfrac{1}{39}\)
\(A=\dfrac{1}{3}-\dfrac{1}{39}=\dfrac{4}{13}\)
b) Ta có :
\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+..................+\dfrac{3}{73.76}\)
\(B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+..................+\dfrac{1}{73}-\dfrac{1}{76}\)
\(B=1-\dfrac{1}{76}=\dfrac{75}{76}\)
~ Học tốt ~
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...................+\dfrac{3}{n\left(n+1\right)}\)
\(\Rightarrow S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+.............+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\Rightarrow S=1-\dfrac{1}{n+1}< 1\)
\(\Rightarrow S< 1\rightarrowđpcm\)
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{n.\left(n+1\right)}\)
\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...-\dfrac{1}{n+1}\)
\(S=1-\dfrac{1}{n+1}\)\(< 1\)
\(\Leftrightarrow S< 1\)
tik cho mik nhé
\(A=3.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\right)\)
\(A=3.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(A=3.\left(1-\dfrac{1}{100}\right)\)
\(A=3.\dfrac{99}{100}=\dfrac{297}{100}\)
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{n\left(n+3\right)}\)
\(\Rightarrow S=\dfrac{4-1}{1.4}+\dfrac{7-4}{4.7}+\dfrac{10-7}{7.10}+...+\dfrac{\left(n+3\right)-n}{n\left(n+3\right)}\)
\(\Rightarrow S=\dfrac{4}{1.4}-\dfrac{1}{1.4}+\dfrac{7}{4.7}-\dfrac{4}{4.7}+\dfrac{10}{7.10}-\dfrac{7}{7.10}+...+\dfrac{n+3}{n\left(n+3\right)}-\dfrac{n}{n\left(n+3\right)}\)
\(\Rightarrow S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{n}-\dfrac{1}{n+3}\)
\(\Rightarrow S=1-\dfrac{1}{n+3}< 1\Rightarrow S< 1\)
Vậy S < 1
\(S=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{43\cdot46}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{43}-\dfrac{1}{46}\)
\(S=1-\dfrac{1}{46}< 1\)
S= \(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{40\cdot43}+\dfrac{3}{43\cdot46}\)
S= \(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{42}-\dfrac{1}{46}\)
S= \(1-\dfrac{1}{46}\)
S= \(\dfrac{45}{46}\)
Mà \(\dfrac{45}{46}< 1\)
\(\Rightarrow S< 1\)
Vậy S < 1
1.
E = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.10}\) + \(\dfrac{3}{10.13}\) + \(\dfrac{3}{13.16}\) + \(\dfrac{3}{16.19}\) + \(\dfrac{3}{19.22}\)
E = 1 - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{10}\) + ... +\(\dfrac{1}{19}\) - \(\dfrac{1}{22}\)
E = 1 - \(\dfrac{1}{22}\)
E = \(\dfrac{21}{22}\)
2.
(x - 4)(x - 5) = 0
TH1:
x - 4 = 0 => x = 4
TH2:
x - 5 = 0 => x = 5
Vậy: x = 4 hoặc x = 5
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...........+\dfrac{1}{x\left(x+3\right)}=\dfrac{6}{19}\)
\(\Rightarrow\dfrac{1}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...........+\dfrac{3}{x\left(x+3\right)}\right)=\dfrac{6}{19}\)
\(\Rightarrow\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+............+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{6}{19}\)
\(\Rightarrow\dfrac{1}{3}\left(1-\dfrac{1}{x+3}\right)=\dfrac{6}{19}\)
\(\Rightarrow1-\dfrac{1}{x+3}=\dfrac{6}{19}:\dfrac{1}{3}\)
\(\Rightarrow1-\dfrac{1}{x+3}=\dfrac{18}{19}\)
\(\Rightarrow\dfrac{1}{x+3}=1-\dfrac{18}{19}\)
\(\Rightarrow\dfrac{1}{x+3}=\dfrac{1}{19}\)
\(\Rightarrow x+3=19\)
\(\Rightarrow x=19-3\)
\(\Rightarrow x=16\)
Vậy \(x=16\) laf giá trị cần tìm
\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{94.97}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{94}-\dfrac{1}{97}\)
\(=1-\dfrac{1}{97}\)
\(=\dfrac{96}{97}\)
\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)
\(=3\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\right)\)
\(=3\left(1-\dfrac{1}{97}\right)\)
\(=3.\dfrac{96}{97}=\dfrac{288}{97}\)