K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2017

a) Số các số hạng là:

( 99-49):2+1\(=\)​26 ( số )

Tổng của dãy số trên là:

 ( 99 + 49 ) x 26 : 2 \(=\)1924

Đáp số: 1924

b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}-\frac{1}{128}\)

\(=\frac{1}{1}-\frac{1}{128}\)

\(=\frac{127}{128}\)

a) Số các số hạng là (99 - 49) : 2 + 1 = 26 số

Tổng của dãy trên là:

(99 + 49) x 26 : 2 = 1924

Đáp số : 1924

b) 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128

= 1/1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128

= 1/1 - 1/128

= 127/128

1 tháng 11 2021

bằng 0,9990234375

2 tháng 11 2021

1023/1024

1 tháng 3 2017

Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(\Rightarrow2A-A=1-\frac{1}{128}=\frac{127}{128}\)

1 tháng 3 2017

=127/128 nhe 

14 tháng 6 2018

a, Số số hạng của dãy số là 9(số);

=> Tổng của dãy số là (9+1)*9/2=45

b,Số số hạng của dãy số là 50 số 

=> Tổng của dãy số là (50+1)*50/2=1275

c, Số số hạng của dãy số là (99-1)/2+1=50 số 

=> Tổng của dãy số là (99+1)*50/2= 2500

14 tháng 6 2018

câu d sai đề

7 tháng 8 2016

các cậu trả lời giúp mình đi

23 tháng 7 2019

B)A*2=(1/2+1/4+....+1/256)*2

=1+1/2+1/4+....+1/128)

A*2-A=(1+1/2+1/4+...+1/128)-(1/2+1/4+...+1/256)

=1-1/256

=255/256

23 tháng 7 2019

a) Đặt A = \(\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}\)

  \(\Rightarrow\frac{1}{3}\times A=\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}+\frac{5}{486}\)

Lấy \(A-\frac{1}{3}\times A\)theo vế ta có : 

\(A-\frac{1}{3}\times A=\left(\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}\right)-\left(\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}+\frac{5}{486}\right)\)

\(\Rightarrow\frac{2}{3}\times A=\frac{5}{2}-\frac{5}{486}\)

\(\Rightarrow\frac{2}{3}\times A=\frac{605}{243}\)

  \(\Rightarrow A=\frac{605}{243}:\frac{2}{3}\)

  \(\Rightarrow A=\frac{605}{162}\)

Vậy  \(\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}=\frac{605}{162}\)

b) Đặt B = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}+\frac{1}{256}\)

=> \(\frac{1}{2}\times B=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}+\frac{1}{512}\)

Lấy B trừ \(\frac{1}{2}\times B\)theo vế ta có : 

\(B-\frac{1}{2}\times B=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...++\frac{1}{128}+\frac{1}{256}\right)-\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{512}\right)\)

\(\Rightarrow\frac{1}{2}\times B=\frac{1}{2}-\frac{1}{512}\)

\(\Rightarrow\frac{1}{2}\times B=\frac{255}{512}\)

\(\Rightarrow B=\frac{255}{512}:\frac{1}{2}\)

\(\Rightarrow B=\frac{255}{256}\)

Vậy \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}=\frac{255}{256}\)

1 tháng 9 2017

Bài 1: 

Ta thấy: 1 + 2 = 3                     3 + 5 = 8

2 + 3 = 5                     5 + 8 = 13

Dãy số trên được lập theo quy luật sau: Kể từ số hạng thứ 3 trở đi mỗi số hạng bằng tổng của hai số hạng đứng liền trước nó.

Ba số hạng tiếp theo là:     21 + 34 = 55;       34 + 55 = 89;      55 + 89 = 144

Vậy dãy số được viết đầy đủ là:          1, 2, 3, 5, 8, 13, 34, 55, 89, 144

Bài 2: 

Ta nhận thấy:         8 = 1 + 3 + 4                            27 = 4+ 8 + 15

15 = 3 + 4 + 8

Từ đó ta rút ra được quy luật của dãy số là: Mỗi số hạng (kể từ số hạng thứ 4) bằng tổng của ba số hạng đứng liền trước nó.

Viết  tiếp ba số hạng, ta được dãy số sau: 1, 3, 4, 8, 15, 27, 50, 92, 169.

Bài 3: 

Giải:

a). Ta nhận xét :

          Số hạng thứ 10 là   :  1024 = 512 x 2

Số hạng thứ 9 là     :  512  = 256 x 2

Số hạng thứ 8 là     :  256  = 128 x 2

Số hạng thứ 7 là     :  128  =  64 x 2

……………………………..

Từ đó ta suy luận ra quy luật của dãy số này là: mỗi số hạng của dãy số gấp đôi số hạng đứng liền trước đó.

Vậy số hạng đầu tiên của dãy là: 1 x 2 = 2.

b). Ta nhận xét :

Số hạng thứ 10 là   : 110 = 11 x 10

Số hạng thứ 9 là     :  99  = 11 x 9

Số hạng thứ 8 là     :  88  = 11 x 8

Số hạng thứ 7 là     :  77  = 11 x 7

…………………………..

Từ đó ta suy luận ra quy luật của dãy số là: Mỗi số hạng bằng số thứ tự của số hạng ấy nhân với 11.

Vậy số hạng đầu tiên của dãy là : 1 x 11 = 11.

1 tháng 9 2017

bài 1:

các số đó là : 55, 89, 144

bài 2 :

đề bài sai, mk nghĩ thế ( mong online math đừng trừ điểm nhé )

bài 3 :

a, nhận xét :

ta thấy : số hạng thứ 10 = 1024 = 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 ( 10 số 2 )

              số hạng thứ 9  = 512 = 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 ( 9 số 2 )

tương tự, ta có :

             số hạng thứ 8 = 8 số 2 nhân với nhau

             số hạng thứ 7 = 7 số 2 nhân với nhau

=> số hạng thứ 1 = 2

b, gọi số hạng đầu tiên là x, ta có :

( 110 - x ) : 11 + 1 = 10 ( theo công thức tìm số số hạng )

110 - x = ( 10 - 1 ) . 11

110 - x = 99

        x = 110 - 99

        x = 11

vậy số hạng đầu tiên của dãy là 11

kick mk nha

thank you very much

24 tháng 6 2017

 

Cộng thêm 1/2 vào biểu thức đã cho, có:

S + 1/21/2+1/4+ 1/8+ 1/16+1/32+1/64+1/128

Nhận xét:

 

 

3 tháng 5 2016

gọi tổng đó là A ta có :

A = 1/2 + 1/4 + 1/8 +1/16 + 1/32 +1/64 + 1/128

2A= ( 1/2 * 2) + ( 1/4 * 2 ) + ( 1/8 * 2) + ( 1/16 * 2) + ( 1/32 * 2 ) + ( 1/64 * 2 ) + ( 1/128 * 2)

2A= 1+ 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64

TA LẤY 2A - 1A =  1A

A = ( 1 + 1/2 +1/4 + 1/8 + 1/16 + 1/32 + 1/64 ) -  ( 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 )

TA THẤY 1/2 - 1/2 = 0 ; 1/4 - 1/4 = 0 ; 1/8 - 1/8 = 0 ;1/16 - 1/16 = 0 ; 1/32 - 1/32 = 0 ; 1/64- 1/64 = 0 

NÊN A = 1 - 1/128 = 127/128

3 tháng 5 2016

gọi tổng đó là A ta có :

A = 1/2 + 1/4 + 1/8 +1/16 + 1/32 +1/64 + 1/128

2A= ( 1/2 * 2) + ( 1/4 * 2 ) + ( 1/8 * 2) + ( 1/16 * 2) + ( 1/32 * 2 ) + ( 1/64 * 2 ) + ( 1/128 * 2)

2A= 1+ 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64

TA LẤY 2A - 1A =  1A

A = ( 1 + 1/2 +1/4 + 1/8 + 1/16 + 1/32 + 1/64 ) -  ( 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 )

TA THẤY 1/2 - 1/2 = 0 ; 1/4 - 1/4 = 0 ; 1/8 - 1/8 = 0 ;1/16 - 1/16 = 0 ; 1/32 - 1/32 = 0 ; 1/64- 1/64 = 0 

NÊN A = 1 - 1/128 = 127/128