Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
J=6 + 16 + 30 + 48 +...+ 19600 + 19998
Chia cả 2 vế cho 2 ta được
B/2 = 3 + 8 + 15 + 24 + ......... + 98000+ 9999
B/2= 1x3+2x4+3x5+4x6+…….+98x100+99x101
B/2= 100/6[(100-1)x(2x100+1)] = 328350
-> B =328350x2=656700
K=2 + 5 + 9 + 14 + ....+ 4949 + 5049
Nhân cả 2 vế với 2 ta được
2xD=1x4+ 2x5+ 3x6+ 4x7+……..+98x101+99x102
2xD = 1(2+2)+2(3+2)+3(4+2)+...+99(100+2)
2xD = 1x2+1x2+2x3+2x2+3x4+3x2+...+99x100+99x2
2xD= (1x2+2x3+3x4+...+99x100)+2(1+2+3+...+99)
2xD = 333300 + 9900 = 343200
-> D= 343200 :2 =171600
a) \(A=2+2^2+2^3+2^4+.....+2^{98}+2^{99}\)
\(\Rightarrow2A=2^2+2^3+2^4+2^5.....+2^{99}+2^{100}\)
\(\Rightarrow2A-A=\left(2^2+2^3+2^4+2^5.....+2^{99}+2^{100}\right)-\left(2+2^2+2^3+2^4+.....+2^{98}+2^{99}\right)\)
\(\Rightarrow A=2^{100}-2\)
b) \(B=2+2^4+2^7+......+2^{97}+2^{100}\)
\(\Rightarrow2^3B=2^4+2^7+......+2^{100}+2^{103}\)
\(\Rightarrow8.B-B=\left(2^4+2^7+......+2^{100}+2^{103}\right)-\left(2+2^4+2^7+......+2^{97}+2^{100}\right)\)
\(\Rightarrow7B=2^{103}-2\)
\(\Rightarrow B=\dfrac{2^{103}-2}{7}\)
Bài 1 :
a/ \(a^3.a^9=a^{3+9}=a^{12}\)
b/\(\left(a^5\right)^7=a^{5.7}=a^{35}\)
c/ \(\left(a^6\right).4.a^{12}=a^{24}.a^{12}.4=a^{24+12}.4=a^{36}.4\)
d/ \(\left(2^3\right)^5.\left(2^3\right)^3=2^{15}.2^9=2^{15+9}=2^{24}\)
e/ \(5^6:5^3+3^3.3^2\)
\(=5^3+3^5=125+243=368\)
i/ \(4.5^2-2.3^2\)
\(=2^2.5^2-2.3^2\)
\(=2^2.25-2^2.14\)
\(=2^2.\left(25-14\right)\)
\(=2^2.11\)
\(=4.11=44\)
a: \(S=\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)
\(=4\left(1+3^2+3^4+...+3^8\right)⋮4\)
b: \(S=\left(1+2\right)+2^2\left(1+2\right)+...+2^8\left(1+2\right)\)
\(=3\left(1+2^2+...+2^8\right)⋮3\)
Chơi câu khó nhất
D = 4 + 42 + 43 + ... + 4n
4D = 42 + 43 + ... + 4n+1
3D = 4n+1 - 4
D = \(\frac{4^{n+1}-4}{3}\)
\(A=1+2^2+2^4+2^6+...+2^{100}\)
\(4A=2\left(1+2^2+2^4+2^6+...+2^{100}\right)=2+2^4+2^6+2^8+...+2^{100}+2^{102}\)
\(4A-A=\left(2^2+2^4+2^6+2^8+...+2^{100}+2^{102}\right)-\left(1+2^2+2^4+...+2^{100}\right)\)
\(3A=2^{102}-1\)
\(A=\frac{2^{102}-1}{3}\)
\(B=2+2^3+2^5+2^7+...+2^{1001}\)
\(4B=2^3+2^5+2^7+...+2^{1001}+2^{1003}\)
\(4B-B=\left(2^3+2^5+2^7+...+2^{1001}+2^{1003}\right)-\left(2+2^3+2^5+...+2^{1001}\right)\)
\(3B=2^{1003}-2\)
\(B=\frac{2^{1003}-2}{3}\)