K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)
Đặt \(5B=5.\text{ (}1+5+5^2+5^3+...+5^{2008}+5^{2009}\text{)}\)
\(\Rightarrow5B=5+5^2+5^3+...+5^{2009}+5^{2010}\)
\(\Rightarrow5B-B=\left(5+5^2+5^3+...+5^{2009}+5^{2010}\right)-\left(1+5+5^2+...+5^{2009}\right)\)\(\Rightarrow4B=5^{2010}-1\)
\(\Rightarrow B=\dfrac{5^{2010}-1}{4}\)
Vậy \(B=\dfrac{5^{2010}-1}{4}\)

16 tháng 9 2015

5B = 5 +52 +53+....+52009

5B- B  = 4B= (52010-1)

=> B= \(\frac{5^{2010}-1}{4}\)

**** CHO MÌNH NHA 

\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)

\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)

\(=\frac{1}{5}+\frac{2}{3}\)

\(=\frac{13}{15}\)

8 tháng 12 2014

Vậy ta thấy 5A=5+5^2+5^3+5^4+...+5^2009+5^2010

=> 5A-A= 5^2010-1

=> 4A=5^2010-1=> 4A=(5^2010-1)/4

 đến đaay em tính ra bằng máy tính hay để nguyên thì chắc chắn cô giáo sẽ cho điểm, tốt nhất cứ để nguyên nhé :)

17 tháng 9 2020

Nguyễn đức hiếu làm sai kìa 

Đoạn cuối :

4A = 52020 -1 

\(A = { {5mũ2020-1} \over 4}\)

4 tháng 11 2018

1. 2008.\(\left(\dfrac{1}{2007}-\dfrac{2009}{1004}\right)-2009\left(\dfrac{1}{2007}-2\right)\)

=\(\left(2008.\dfrac{1}{2007}-2008.\dfrac{2009}{1004}\right)-\left(2009.\dfrac{1}{2007}-2009.2\right)\)

=\(\left(\dfrac{2008}{2007}-2.2009\right)-\left(\dfrac{2009}{2007}-2.2009\right)\)

=\(\left(\dfrac{2008}{2007}-4018\right)-\left(\dfrac{2009}{2007}-4018\right)\)

=\(\dfrac{2008}{2007}-4018-\dfrac{2009}{2007}+4018\)

=\(\left(\dfrac{2008}{2007}-\dfrac{2009}{2007}\right)+\left[\left(-4018\right)+4018\right]\)

=\(\dfrac{1}{2007}.\left(2008-2009\right)+0\)

=\(\dfrac{1}{2007}.\left(-1\right)+0\)

=\(\dfrac{-1}{2007}\)

4 tháng 11 2018

2.\(\dfrac{5^5.20^3-5^4.20^3+5^7.4^5}{\left(20+5\right)^3+4^5}\)

=\(\dfrac{5^5.\left(2^2.5\right)^3-5^4.\left(2^2.5\right)^3+5^7.\left(2^2\right)^5}{\left[\left(2^2.5\right)+5\right]^3+\left(2^2\right)^5}\)

=\(\dfrac{5^5.2^6.5^3-5^4.2^6.5^3+5^7.2^{10}}{2^6.5^3+5^3+2^{10}}\)

=\(\dfrac{5^9.2^6-5^7.2^6+5^7.2^{10}}{5^3.\left(2^6+1\right)+2^{10}}\)

=\(\dfrac{5^7.2^6\left(5^2-1-2^4\right)}{5^3\left(2^6+1\right)+2^{10}}\)

bí rồi

a: \(=\dfrac{2008}{2007}-2009\cdot2-\dfrac{2009}{2007}+2009\cdot2\)

=-1/2007

b: \(=\dfrac{5^5\cdot5^3\cdot2^6-5^4\cdot5^3\cdot2^6+5^7\cdot2^{10}}{5^6\cdot2^{10}}\)

\(=\dfrac{5^8\cdot2^6-5^7\cdot2^6+5^7\cdot2^{10}}{5^6\cdot2^{10}}\)

\(=\dfrac{5^7\cdot2^6\left(5-1+2^4\right)}{5^6\cdot2^{10}}=\dfrac{5}{16}\cdot\dfrac{20}{1}=\dfrac{100}{16}=\dfrac{25}{4}\)

3 tháng 5 2016

nhân 5 lần lên:

5A=5+52+...+52010

=> 4A =5A-A= 52010-1  => A= (52010-1):4

3 tháng 5 2016

      5A = \(5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)

        A = \(1+5+5^2+5^3+...+5^{2008}+5^{2009}\)

\(\Rightarrow\) 4A = \(5^{2010}-1\)

\(\Rightarrow\)   A = \(\frac{5^{2010}-1}{4}\)

Đúng thì cho mk biết nha

23 tháng 2 2020

\(A=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)

\(5.A=5.(1+5+5^2+5^3+...+5^{2008}+5^{2009}) \)

\(5.A=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)

\(5.A-A=4.A=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+5^3+...+5^{2008}+5^{2009})\)

\(4.A=5^{2010}-1\)

\(A=\frac{5^{2010}-1}{4}\)

\(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2\)

\(2.B=2.(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2)\)

\(2.B=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3\)

\(2.B+B=3.B=(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3)+(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2)\)

\(3.B=2^{101}+2^2 \)

\(B=\frac{2^{101}+2^{2}}{3}\)

\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-50^3)\)

\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-10^3)...(1000-50^3)\)

\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-1000)...(1000-50^3)\)

\(C=(1000-1^3).(1000-2^3).(1000-3^3)...0...(1000-50^3)\)

\(C=0\)

Tick cho mình nha!!!

Chúc bạn học tốt!

23 tháng 2 2020

Mình làm mất hơn 1 tiếng đó!

4 tháng 3 2020

\(B=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)

\(5B=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)

\(4B=5^{2010}-1\)

\(B=\frac{5^{2010}-1}{4}\)

4 tháng 3 2020

\(B=1+5+5^2+...+\)\(5^{2009}\)

\(\Rightarrow5B=5+5^2+5^3+...+5^{2010}\)

\(\Rightarrow5B-B=4B=5^{2010}-1\)

\(\Rightarrow B=\frac{5^{2010}-1}{4}\)