Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ở tất cả các dạng bài như thế này em chỉ cần ghi nhớ công thức:
\(d(u(x))=u'(x)dx\)
Câu 1)
Ta có \(I_1=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} e^{\sin x}\cos xdx=\int _{\frac{\pi}{4}}^{\frac{\pi}{2}}e^{\sin x}d(\sin x)\)
Đặt \(\sin x=t\Rightarrow I_1=\int ^{1}_{\frac{\sqrt{2}}{2}}e^tdt=\left.\begin{matrix} 1\\ \frac{\sqrt{2}}{2}\end{matrix}\right|e^t=e-e^{\frac{\sqrt{2}}{2}}\)
Câu 2)
\(I_2=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}e^{2\cos x+1}\sin xdx=\frac{-1}{2}\int ^\frac{\pi}{2}_{\frac{\pi}{4}}e^{2\cos x+1}d(2\cos x+1)\)
Đặt \(2\cos x+1=t\Rightarrow I_2=\frac{-1}{2}\int ^{1}_{1+\sqrt{2}}e^tdt\)
\(=\frac{-1}{2}.\left.\begin{matrix} 1\\ 1+\sqrt{2}\end{matrix}\right|e^t=\frac{-1}{2}(e-e^{1+\sqrt{2}})\)
Câu 3:
Có \(I_3=\int ^{e}_{1}\frac{e^{2\ln x+1}}{x}dx=\int ^{e}_{1}e^{2\ln x+1}d(\ln x)\)
\(=\frac{1}{2}\int ^{e}_{1}e^{2\ln x+1}d(2\ln x+1)\)
Đặt \(2\ln x+1=t\Rightarrow I_3=\frac{1}{2}\int ^{3}_{1}e^tdt=\frac{1}{2}.\left.\begin{matrix} 3\\ 1\end{matrix}\right|e^t=\frac{1}{2}(e^3-e)\)
Câu 4:
\(I_4=\int ^{1}_{0}xe^{x^2+2}dx=\frac{1}{2}\int ^{1}_{0}e^{x^2+2}d(x^2+2)\)
Đặt \(x^2+2=t\Rightarrow I_4=\frac{1}{2}\int ^{3}_{2}e^tdt=\frac{1}{2}.\left.\begin{matrix} 3\\ 2\end{matrix}\right|e^t=\frac{1}{2}(e^3-e^2)\)
\(I=\int\limits^{\pi}_{-\pi}\frac{3^xcos^2x}{3^x+1}dx\)
Đặt \(x=-t\Rightarrow dx=-dt\)
\(\Rightarrow I=\int\limits^{-\pi}_{\pi}\frac{cos^2t}{3^t+1}\left(-dt\right)=\int\limits^{\pi}_{-\pi}\frac{cos^2t}{3^t+1}dt=\int\limits^{\pi}_{-\pi}\frac{cos^2x}{3^x+1}dx\)
\(\Rightarrow2I=I+I=\int\limits^{\pi}_{-\pi}\left(\frac{3^xcos^2x}{3^x+1}+\frac{cos^2x}{3^x+1}\right)dx=\int\limits^{\pi}_{-\pi}cos^2xdx=\pi\)
\(\Rightarrow I=\frac{\pi}{2}\)
lâu ko làm tích phân cũng quên béng đi rồi những câu này cũng không khó chú ý 1 chút là làm đc ak ,
trong cái căn bậc 2 nhé 3+2x-x^2= -((x-1)^2+2)) sau do dat x-1=a nen x+1=a+2 thay vap bieu tu lam binh thuong la ra thoi ak
a/ \(I=\int sinxdx-\frac{1}{2}\int e^{2x}d\left(2x\right)=-cosx-\frac{1}{2}e^{2x}+C\)
b/ Ko rõ đề
c/ Không rõ đề
d/ Đặt \(\left\{{}\begin{matrix}u=x+1\\dv=sinx.dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-cosx\end{matrix}\right.\)
\(\Rightarrow I=-\left(x+1\right)cosx+\int cosxdx=-\left(x+1\right)cosx+sinx+C\)
Lời giải:
Xét \(\int \frac{\tan ^2x-\cos ^2x}{\sin ^2x}dx=\int \frac{\tan ^2x}{\sin ^2x}dx-\int \frac{\cos ^2x}{\sin ^2x}dx\)
Có:
\(\int \frac{\tan ^2x}{\sin ^2x}dx=\int \frac{\sin ^2x}{\cos ^2x. \sin^2 x}dx=\int \frac{1}{\cos ^2x}dx\)
\(=\int d(\tan x)=\tan x+c\)
Và:
\(\int \frac{\cos ^2x}{\sin ^2x}dx=\int \frac{1-\sin ^2x}{\sin ^2x}dx=\int \frac{1}{\sin ^2x}dx-\int dx\)
\(=-\int d(\cot x)-x+c=-\cot x-x+c\)
Do đó:
\(\int \frac{\tan ^2x-\cos ^2x}{\sin ^2x}dx=\tan x+c-(-\cot x-x+c)=\tan x+\cot x+x+c\)
\(\Rightarrow \int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}\frac{\tan ^2x-\cos ^2x}{\sin ^2x}dx=\frac{4\sqrt{3}}{3}+\frac{\pi}{3}-\frac{4\sqrt{3}}{3}-\frac{\pi}{6}=\frac{\pi}{6}\)
Câu 1: điều kiện là hàm f(x) liên tục và khả vi trên [1;6]
\(\int\limits^6_1f\left(x\right)dx=\int\limits^2_1f\left(x\right)dx+\int\limits^6_2f\left(x\right)dx=4+12=16\)
Câu 2:
Không tính được tích phân kia, tích phân \(\int\limits^3_1f\left(3x\right)dx\) thì còn tính được
Ko thể dịch nổi đề câu 1 a;b, chỉ đoán thôi. Còn câu 2 thì thực sự là chẳng hiểu bạn viết cái gì nữa? Chưa bao giờ thấy kí hiệu tích phân đi kèm kiểu đó
Câu 1:
a/ \(\int\frac{2x+4}{x^2+4x-5}dx=\int\frac{d\left(x^2+4x-5\right)}{x^2+4x-5}=ln\left|x^2+4x-5\right|+C\)
b/ \(\int\frac{1}{x.lnx}dx\)
Đặt \(t=lnx\Rightarrow dt=\frac{dx}{x}\)
\(\Rightarrow I=\int\frac{dt}{t}=ln\left|t\right|+C=ln\left|lnx\right|+C\)
c/ \(I=\int x.sin\frac{x}{2}dx\)
Đặt \(\left\{{}\begin{matrix}u=x\\dv=sin\frac{x}{2}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-2cos\frac{x}{2}\end{matrix}\right.\)
\(\Rightarrow I=-2x.cos\frac{x}{2}+2\int cos\frac{x}{2}dx=-2x.cos\frac{x}{2}+4sin\frac{x}{2}+C\)
d/ Đặt \(\left\{{}\begin{matrix}u=ln\left(2x\right)\\dv=x^3dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{2dx}{2x}=\frac{dx}{x}\\v=\frac{1}{4}x^4\end{matrix}\right.\)
\(\Rightarrow I=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{4}\int x^3dx=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{16}x^4+C\)
\(I_1=3\int_1^2x^2dx+\int_1^2\cos xdx+\int_1^2\frac{dx}{x}=x^3\)\(|^2 _1\)+\(\sin x\)\(|^2_1\) +\(\ln\left|x\right|\)\(|^2_1\)
\(=\left(8-1\right)+\left(\sin2-\sin1\right)+\left(\ln2-\ln1\right)\)
\(=7+\sin2-\sin1+\ln2\)
b) \(I_2=4\int_1^2\frac{dx}{x}-5\int_1^2x^4dx+2\int_1^2\sqrt{x}dx\)
\(=4\left(\ln2-\ln1\right)-\left(2^5-1^5\right)+\frac{4}{3}\left(2\sqrt{2}-1\sqrt{1}\right)\)
\(=4\ln2+\frac{8\sqrt{2}}{3}-32\frac{1}{3}\)
Câu a: Tích phân không thể tính được
Câu b:
Đặt \(\sqrt{x}=t\). Khi đó:
\(\int ^{\pi ^2}_{0}x\sin \sqrt{x}dx=\int ^{\pi}_{0}t^2\sin td(t^2)\) \(=2\int ^{\pi}_{0}t^3\sin tdt\)
Tính \(\int t^3\sin tdt\) bằng nguyên hàm từng phần:
\(\Rightarrow \int t^3\sin tdt=\int t^3d(-\cos t)=-t^3\cos t+\int \cos t d(t^3)\)
\(=-t^3\cos t+3\int t^2\cos tdt\)
\(=-t^3\cos t+3\int t^2d(\sin t)=-t^3\cos t+3(t^2\sin t-\int \sin td(t^2))\)
\(=-t^3\cos t+3(t^2\sin t-2\int t\sin tdt)\)
\(=-t^3\cos t+3(t^2\sin t-2\int td(-cos t))\)
\(=-t^3\cos t+3[t^2\sin t-2(-t\cos t+\int \cos tdt)]\)
\(=-t^3\cos t+3t^2\sin t+6t\cos t-6\sin t+c\)
\(\Rightarrow 2\int ^{\pi}_{0}t^3\sin tdt=2(-t^3\cos t+3t^2\sin t+6t\cos t-6\sin t+c)\left|\begin{matrix} \pi\\ 0\end{matrix}\right.\)
\(=2\pi ^3-12\pi \)
Lời giải:
Đặt \(2x+1=t\Rightarrow x=\frac{t-1}{2}\)
Khi đó:
\(\int ^{\frac{1}{9}}_{0}\frac{x}{\sin ^2(2x+1)}dx=\frac{1}{2}\int ^{\frac{11}{9}}_{0}\frac{t-1}{\sin ^2t}d(\frac{t-1}{2})=\frac{1}{4}\int ^{\frac{11}{9}}_{1}\frac{t-1}{\sin ^2t}dt\)
Xét \(\int \frac{t-1}{\sin ^2t}dt=\int \frac{t}{\sin ^2t}dt-\int \frac{dt}{\sin ^2t}=\int td(-\cot t)-(-\cot t)+c\)
\(=(-t\cot t+\int \cot tdt)+\cot t+c\)
\(=-t\cot t+\int \frac{\cos t}{\sin t}dt+\cot t+c\)
\(=-t\cot t+\int \frac{d(\sin t)}{\sin t}+\cot t+c\)
\(=-t\cot t+\ln |\sin t|+\cot t+c\)
\(\Rightarrow \frac{1}{4}\int ^{\frac{11}{9}}_{1}\frac{t-1}{\sin ^2t}dt=\frac{1}{4}(-t\cot t+\ln |\sin t|+\cot t+c)\left|\begin{matrix} \frac{11}{9}\\ 1\end{matrix}\right.\)
\(\approx 0,007\)