Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101
A= 2 - 1/3 + 1/3 - 1/5 + 1/5 - ... + 2/99 - 2/101
A = 2 - 2/101 = 200/101
B = 3-1/3+1/3-1/5+1/5-...+3/49-3/51
B = 3-3/51(tự tính nhé)
C = 5(5/1.6+5/6.11+5/11.16+....+5/26-5/31
C = 5(5-1/31)(tự tính)
D rút gon cho 2 rồi 3D , sau đó 5(3/.... tương tự các cách làm trên)
2E nhân lên rồi giải giống trên
3F Rồi nhân 4/77 và rút gọn thì tính được
a, A= \(\frac{1}{1}\)- \(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+......+\(\frac{1}{99}\)-\(\frac{1}{100}\)
A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+(-\(\frac{1}{3}\)+\(\frac{1}{3}\)-.....-\(\frac{1}{99}\)+\(\frac{1}{99}\))
A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+0
A=1-\(\frac{1}{100}\)=\(\frac{100}{100}\)-\(\frac{1}{100}\)=\(\frac{99}{100}\)
\(\frac{5}{4}+\frac{3}{7}+\frac{1}{2}+\frac{6}{8}=\frac{5}{4}+\frac{3}{7}+\frac{1}{2}+\frac{3}{4}\)
\(=\left(\frac{5}{4}+\frac{3}{4}\right)+\frac{1}{2}+\frac{3}{7}=2+\frac{1}{2}+\frac{3}{7}\)
\(=\frac{5}{2}+\frac{3}{7}=\frac{41}{14}\)
\(\frac{77}{11}+\frac{88}{22}+\frac{99}{33}=7+4+3=14\)
\(\frac{60}{30}+\frac{70}{35}+\frac{80}{40}=2+2+2=6\)
54 +37 +12 +68 = \(\frac{41}{14}\)
7711 +8822 +9933 = 14
\(\frac{60}{30}+\frac{70}{35}+\frac{80}{40}=6\)
Chúc học tốt
D bằng [2/45+4/105]-[1/99+2/77]
26/315-25/693 bằng 23/495
Đ/S....................................................................
B=2/15+2/35+2/63+2/99
B=2(1/3.5+1/5.7+1/7.9+1/9.11) khoảng cách từ 3-5;5-5;7-9;9-11 là 2 nen
B=2/2(1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11) gop -1/5+1/5;-1/7+1/7;-1/9+1/9=0
B=1(1/3-1/11)=8/33
=2/3*5+2/5*7+2/7*9+2/9*11
=1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11
=1/3-1/11
=8/33
\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+...+\frac{2}{899}\)
\(=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+...+\frac{2}{29\cdot31}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{31}\)
\(=\frac{1}{3}-\frac{1}{31}\)
\(=\frac{28}{93}\)
\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{899}\)
= \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{29.31}\)
= \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{29}-\frac{1}{31}\)
= \(\frac{1}{3}-\frac{1}{31}+0+0+...+0\)
= \(\frac{29}{93}\)
\(\frac{2^2}{15}+\frac{2^2}{35}+\frac{2^2}{63}+\frac{2^2}{99}+\frac{2^2}{143}=2\cdot\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}\right)=2.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)=2\cdot\left(\frac{1}{3}-\frac{1}{13}\right)=2\cdot\frac{10}{39}=\frac{20}{39}\)
\(=2\left(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)=2\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=2\left(1-\frac{1}{13}\right)=2.\frac{12}{13}=\frac{24}{13}\)
\(A=\frac{2}{35}+\frac{4}{77}+\frac{2}{143}+\frac{4}{221}+\frac{2}{323}+\frac{4}{437}+\frac{2}{575}\)
\(A=\frac{2}{5.7}+\frac{4}{7.11}+\frac{2}{11.13}+\frac{4}{13.17}+\frac{2}{17.19}+\frac{4}{19.23}+\frac{2}{23.25}\)
\(A=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{25}\)
\(A=\frac{1}{5}-\frac{1}{25}=\frac{4}{25}\)
\(A=\frac{2}{35}+\frac{4}{77}+\frac{2}{143}+\frac{4}{221}+\frac{2}{323}+\frac{4}{437}+\frac{2}{575}\)
\(A=\frac{2}{5.7}+\frac{4}{7.11}+\frac{2}{11.13}+\frac{4}{13.17}+\frac{2}{17.19}+\frac{4}{19.23}+\frac{2}{23.25}\)
\(A=1.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+...+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{25}\right)\)
A = 1/5 - 1/25
A = 4/25