\(A=\left(2+1\right)\times\left(2^2+1\right)\times\left(2^4+1\right)\times\left(2^8+1\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

\(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)\)

\(=\left(2^4-1\right)...\left(2^{32}+1\right)\)

..............................................................

\(=2^{64}-1\)

29 tháng 6 2017

42.(-53)+47.(-156)+(-114).(-47)

5 tháng 11 2017

a, \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}=2^{64}-1-2^{64}=-1\)

b,\(B=\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)+\dfrac{5^{128}-3^{128}}{2}\)

\(=\dfrac{\left(5-3\right)\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)}{2}+\dfrac{5^{128}-3^{128}}{2}\)\(=\dfrac{\left(5^2-3^2\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)+5^{128}-3^{128}}{2}\)

\(=\dfrac{\left(5^{64}-3^{64}\right)\left(5^{64}+3^{64}\right)+5^{128}-3^{128}}{2}=\dfrac{2.5^{128}}{2}=5^{128}\)

AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Lời giải:

$3x(1-x)+(x+3)(x-2)=-2(x-4)^2$

$\Leftrightarrow (3x-3x^2)+(x^2-2x+3x-6)=-2(x^2-8x+16)$

$\Leftrightarrow -2x^2+4x-6=-2x^2+16x-32$

$\Leftrightarrow 12x=26\Rightarrow x=\frac{13}{6}$

Vậy........

12 tháng 9 2017

(x+1) * (x2 +x+1) * (x-1) * (x2-x+1)   = 7

[(x+1) * (x+x+1) ]*[(x-1) * (x2-x+1)]= 7  [Áp dụng hằng đẳng thức a3+b3=(a+b)*(a2+ab+b2)]

(x3+13) * (x3-13)                               = 7

x3 * x3 - x3 * 13 + x3 * 13 - 13 *13     =7

(x3)2 - 1                                            = 7

(x3)                                                 =7+1

(x3)                                                 =8

suy ra x = 3 căn 2

28 tháng 2 2020

Ta có : \(3x\left(1-x\right)+\left(x+3\right)\left(x-2\right)=-2\left(x-4\right)^2\)

=> \(3x\left(1-x\right)+\left(x+3\right)\left(x-2\right)=-2\left(x^2-8x+16\right)\)

=> \(3x-3x^2+x^2+3x-2x-6=-2x^2+16x-32\)

=> \(3x-3x^2+x^2+3x-2x-6+2x^2-16x+32=0\)

=> \(-12x+26=0\)

=> \(x=\frac{26}{12}=\frac{13}{6}\)

Vậy phương trình trên có tập nghiệm là \(S=\left\{\frac{13}{6}\right\}\)

28 tháng 2 2020

mơn bạn nhìu

13 tháng 6 2018

\(6\left(x+1\right)^2-2\left(x+1\right)^3+2\left(x-1\right)\left(x^2+x+1\right)=1\)

\(6\left(x^2+2x+1\right)-2\left(x^3+3x^2+3x+1\right)+2\left(x^3-1\right)=1\)

\(6x^2+12x+6-2x^3-6x^2-6x-2+2x^3-2=1\)

⇔ 6x + 1 = 0

⇔ x = \(\dfrac{-1}{6}\)

KL.........

23 tháng 9 2016

a) x3 + (a+b+c)x2+ (ab+ac+bc)x +abc

= x3 +ax2+bx2+cx2+abx+acx+bcx+abc

=x3+cx2+abx+abc+ax2+acx+bx2+bcx

=x2 (x+c) + ab (x+c) +ax (x+c) +bx (x+c)

= (x+c) (x2+ab+ax+bx)

= (x+c) { x(x+b)+a(x+b)}

=(x+c) (x+b) (x+a)

3 tháng 8 2017

Bạn chứng minh đẳng thức sau nhé:  \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)                                                                                                \(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)

Bạn nhìn thử xem cái ta đi chứng minh có giống với giả thiết của đề bài ko. Giả sử đặt ab=x, bc=y, ac=z.

Khi đó \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)

Do đó xảy ra 2 trường hợp: x+y+z=0 hoặc \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Vì a,b,c là các số thực dương nên \(x+y+z\ne0\)do đó \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Suy ra: x=y=z hay ab=bc=ac hay a=b=c.

Từ đó suy ra điều phải chứng minh. Có gì thắc mắc liên hệ với mình nha.