Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+\frac{2}{4}-\frac{2}{5}+\frac{2}{5}-\frac{2}{6}+.....+\frac{2}{99}-\frac{2}{100}\)
Ta tính các số âm và số dương giống nhau cộng lại có tổng bằng 0
\(\Rightarrow A=\frac{2}{2}-\frac{2}{100}\)
\(A=\frac{100}{100}-\frac{2}{100}=\frac{98}{100}=\frac{49}{50}\)
Đúng 100%
Đúng 100%
Đúng 100%
\(A=\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+....+\frac{2}{99\cdot100}\)
\(A:2=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+....+\frac{1}{99\cdot100}\)
A : 2 = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)
\(A:2=\frac{1}{2}-\frac{1}{100}\)
\(A:2=\frac{49}{100}\)
A = \(\frac{49}{50}\)
c) \(C=1.2+2.3+3.4+...+98.99\)
\(\Rightarrow3C=1.2\left(3-0\right)+2.3\left(4-1\right)+3.4\left(5-2\right)+...+98.99\left(100-97\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+98.99.100-97.98.99\)
\(=98.99.100\)
\(\Rightarrow C=\frac{98.99.100}{3}=323400\)
d) \(D=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
\(A=\frac{1^2.2^2.3^2...1000^2}{1.2^2.3^2.4^2...1000^2.1001}=\frac{1}{1001}\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=2.\frac{49}{100}\)
\(=\frac{49}{50}\)
= 2.(1/2.3 + 1/3.4 + ... + 1/99.100)
trong ngoac co cong thuc do, tim hieu di la lam dc
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{100^2}{100.101}\)
\(=\frac{1.1.2.2.3.3...100.100}{1.2.2.3.3.4.4...100.101}\)
\(=\frac{\left(1.2.3...100\right)\left(1.2.3...100\right)}{\left(1.2.3..100\right)\left(2.3.4...101\right)}=\frac{1}{101}\)
Ta có: Q=4 + 22 + 23 + .... + 220
2Q = 8 + 23 + 24 + ... + 221
2Q - Q = 221 - 4 - 22 + 8
Q = 221