K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2019

\(x^4-25\)

\(=\left(x^2\right)^2-5^2\)

\(=\left(x^2-5\right).\left(x^2+5\right)\)

Thay \(x=-\sqrt{5}\)vào ta có:

\(\left[\left(-\sqrt{5}\right)^2-5\right].\left[\left(-\sqrt{5}\right)+5\right]=\left[5-5\right].\left[5+5\right]=0.10=0\)

Vậy khi \(x=-\sqrt{5}\)thì \(x^4-25=0\)

6 tháng 11 2019

\(x^4-25=\left(x^2-5\right)\left(x^2+5\right)\)

\(=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\left(x^2+5\right)\)

Thay \(x=-\sqrt{5}\)vào đa thức đã phân tích  thành nhân tử, ta được:

\(\left(x-\sqrt{5}\right)\left(-\sqrt{5}+\sqrt{5}\right)\left(x^2+5\right)\)

\(=\left(x-\sqrt{5}\right).0.\left(x^2+5\right)=0\)

3 tháng 7 2019

\(x^8+3x^4+4\)

\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)

\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)

\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)

3 tháng 7 2019

\(4x^4+4x^3+5x^2+2x+1\)

\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)

\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)

\(=\left(2x^2+x+1\right)^2\)

20 tháng 9 2018

\(49\left(x-4\right)^2-9\left(x+2\right)^2\)

\(=\left(7x-28\right)^2-\left(3x+6\right)^2\)

\(=\left(7x-28-3x-6\right)\left(7x-28+3x+6\right)\)

\(=\left(4x-34\right)\left(10x-22\right)\)

\(=4\left(2x-17\right)\left(5x-11\right)\)

21 tháng 9 2018

cảm ơn nha

24 tháng 3 2017

a/ \(x^5+x+1=\left(x^5+x^4+x^3\right)+\left(-x^4-x^3-x^2\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

24 tháng 3 2017

c/ \(x\sqrt{x}-3x+4\sqrt{x}-2=\left(x\sqrt{x}-x\right)+\left(-2x+2\sqrt{x}\right)+\left(2\sqrt{x}-2\right)\)

\(=\left(\sqrt{x}-1\right)\left(x-2\sqrt{x}+2\right)\)

29 tháng 9 2019

b) \(\frac{2}{3}x^3y^4-\frac{5}{3}x^5y^2\)

\(=x^3y^2\left(\frac{2}{3}y^2-\frac{5}{3}x^2\right)\)

\(=x^3y^2\left(\sqrt{\frac{2}{3}}y+\sqrt{\frac{5}{3}}x\right)\left(\sqrt{\frac{2}{3}}y-\sqrt{\frac{5}{3}}x\right)\)

d) \(x^2-25=\left(x+5\right)\left(x-5\right)\)

9 tháng 12 2017

Bài 1

2x2 + 8x + 16 = 2(x2 + 4x + 4) = 2(x + 2)2

Bài 2

\(\frac{x}{x-5}\)\(+\)\(\frac{2}{x^2-25}\)\(=\)\(\frac{x\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}\)\(+\)\(\frac{2}{x^2-25}\)\(=\)\(\frac{x^2+5x+2}{x^2-25}\)

9 tháng 12 2017

\(\frac{x}{x-5}+\frac{2}{x^2-25}=\frac{x\left(x+5\right)+2}{x^2-25}\)

\(=\frac{x^2+5x+2}{x^2-25}\)

4 tháng 9 2016

a) x2 – 3x + 2 = a) x2 – x - 2x + 2 = x(x - 1) - 2(x - 1) = (x - 1)(x - 2)

Hoặc x2 – 3x + 2 = x2 – 3x - 4 + 6

                         = x2 - 4 - 3x + 6

                          = (x - 2)(x + 2) - 3(x -2)

                           = (x - 2)(x + 2 - 3) = (x - 2)(x - 1)

b) x2 + x – 6 = x2 + 3x - 2x – 6

                       = x(x + 3) - 2(x + 3)

                        = (x + 3)(x - 2).

 

14 tháng 9 2015

A = (x5 - x2)  + (x2 + x + 1) + (x4 - x) = x2.(x- 1) + (x+ x+1) + x.(x- 1)

A = x2.(x -1).(x+ x+ 1) + (x+ x+1) + x.(x -1).(x+ x+1) = (x+ x+1).[x2.(x -1) + 1+ x.(x-1)]

A = (x+ x+1) .(x3 - x + 1) 

7 tháng 8 2016

a.

\(25\left(x-y\right)^2-16\left(x+y\right)^2\)

\(=\left[5\left(x-y\right)\right]^2-\left[4\left(x+y\right)\right]^2\)

\(=\left[5\left(x-y\right)-4\left(x+y\right)\right]\left[5\left(x-y\right)+4\left(x+y\right)\right]\)

\(=\left(5x-5y-4x-4y\right)\left(5x-5y+4x+4y\right)\)

\(=\left(x-9y\right)\left(9x-y\right)\)

b.

\(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)

\(=\left(a^2+b^2-5\right)^2-\left[2\left(ab+2\right)\right]^2\)

\(=\left[\left(a^2+b^2-5\right)+2\left(ab+2\right)\right]\left[\left(a^2+b^2-5\right)-2\left(ab+2\right)\right]\)

\(=\left(a^2+b^2-5+2ab+4\right)\left(a^2+b^2-5-2ab-4\right)\)

\(=\left[\left(a+b\right)^2-1\right]\left[\left(a-b\right)^2-9\right]\)

\(=\left[\left(a+b\right)^2-1^2\right]\left[\left(a-b\right)^2-3^2\right]\)

\(=\left(a+b-1\right)\left(a+b+1\right)\left(a-b-3\right)\left(a-b+3\right)\)