Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(A=\frac{1}{10.9}-\frac{1}{9.8}-\frac{1}{8.7}-\frac{1}{7.6}-\frac{1}{6.5}-\frac{1}{5.4}-\frac{1}{4.3}-\frac{1}{3.2}-\frac{1}{2.1}\)
\(-A=\left(\frac{1}{10.9}+\frac{1}{9.8}+\frac{1}{8.7}+\frac{1}{7.6}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(-A=\frac{1}{10}-\frac{1}{9}+\frac{1}{9}-\frac{1}{8}+\frac{1}{8}-\frac{1}{7}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\)
\(-A=\frac{1}{10}-1=\frac{-9}{10}\Rightarrow A=\frac{9}{10}\)
\(A=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{1}{90}-\left(\frac{1}{72}+\frac{1}{56}+\frac{1}{42}+\frac{1}{30}+\frac{1}{20}+\frac{1}{12}+\frac{1}{6}+\frac{1}{2}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{8.9}+\frac{1}{7.8}+\frac{1}{6.7}+\frac{1}{5.6}+\frac{1}{4.5}+\frac{1}{3.4}+\frac{1}{2.3}+\frac{1}{1.2}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)=\frac{1}{90}-\frac{8}{9}=-\frac{79}{90}\)
Vậy A=-79/90
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+.....+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{50}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-....-\frac{1}{25}\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+....+\frac{1}{50}\)
Vậy \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{25}\)
\(\Rightarrow A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)\(\left(dpcm\right)\)
Bài này lớp 6 mik kiểm tra chất lượng đầu năm nè
Ta có:\(\frac{x+y}{2}=\frac{y-5}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:\(\frac{x+y}{2}=\frac{y-5}{3}=\frac{x+y+y-5}{2+3}=\frac{x+2y-5}{5}\)
\(\Rightarrow\frac{x+2y-5}{5}=\frac{x+2y-5}{y-1}\)\(\Rightarrow y-1=5\Rightarrow y=6\)
\(\Rightarrow\frac{x+6}{2}=\frac{6-5}{3}\)\(\Rightarrow\frac{x+6}{2}=\frac{1}{3}\)
\(\Rightarrow3\cdot\left(x+6\right)=2\)
\(\Rightarrow3x+18=2\)
\(\Rightarrow3x=-16\Rightarrow x=\frac{-16}{3}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x+y}{2}=\frac{y-5}{3}=\frac{x+y+y-5}{2+3}=\frac{x+2y-5}{5}\)
\(=\frac{x+2y-5}{y-1}\) (theo đề bài)
=> y - 1 = 5
=> y = 5 + 1 = 6
Thay y = 6 vào đề bài ta có: \(\frac{x+6}{2}=\frac{7-6}{3}=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{3}.2-6=\frac{-16}{3}\)
Vậy \(x=\frac{-16}{3};y=6\)
\(B=\frac{1}{5.6}+\frac{1}{10.9}+\frac{1}{15.12}+...+\frac{1}{3350.2013}\)
\(B=\frac{1}{5.3}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{670.671}\right)\)
\(B=\frac{1}{15}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{670}-\frac{1}{671}\right)\)
\(B=\frac{1}{15}.\left(1-\frac{1}{671}\right)\)
\(B=\frac{1}{15}.\frac{670}{671}=\frac{134}{2013}\)
Nguyễn Huy Thắngsoyeon_Tiểubàng giảiSilver bulletLê Nguyên HạoPhương AnVõ Đông Anh Tuấnsoyeon_Tiểubàng giảiLê Thị Linh ChiNguyễn Huy Tú