Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\\ =\left(4\sqrt{2}-5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)\\ =\left(-\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{3}+\sqrt{2}\right)\\ =\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+\sqrt{2}\right)\\ =\left(3\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2=9.3-2=25\)
\(\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)
\(=\left(4\sqrt{2}-5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)\)
\(=\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+\sqrt{2}\right)=\left(3\sqrt{3}\right)^2-\sqrt{2}^2\)
\(=9.3-2=27-2=25\)
\(C=\sqrt{15-6\sqrt{6}}+\sqrt{33+12\sqrt{6}}=\sqrt{9-2.3\sqrt{6}+6}+\sqrt{24+2.3.2\sqrt{6}+9}=3-\sqrt{6}+2\sqrt{6}+3=6+\sqrt{6}\) \(D=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}=\dfrac{\sqrt{3-2\sqrt{3}+1}-\sqrt{3+2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{\sqrt{2}}=-\dfrac{2}{\sqrt{2}}=-\sqrt{2}\) \(F=\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)=\left(4\sqrt{2}-5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)=\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+\sqrt{2}\right)=27-2=25\)
\(C=\sqrt{15-6\sqrt{6}}+\sqrt{33+12\sqrt{6}}=\sqrt{\left(\sqrt{9}-\sqrt{6}\right)^2}+\sqrt{\left(\sqrt{24}+\sqrt{9}\right)^2}=3-\sqrt{6}+2\sqrt{6}+3=6+\sqrt{6}\)
\(D=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
\(\Rightarrow\sqrt{2}D=\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}-1-\sqrt{3}-1=-2\)
\(\Rightarrow D=-\dfrac{2}{\sqrt{2}}=-\sqrt{2}\)
\(F=\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)=\left(4\sqrt{2}-5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)=\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+\sqrt{2}\right)=\left(3\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2=27-2=25\)
\(A=\left(\sqrt{5}+3\right)\left(5-\sqrt{15}\right)=5\sqrt{5}-5\sqrt{3}+15-3\sqrt{15}\)
Bạn ghi nhầm đề thì phải, ngoặc đầu là \(\sqrt{5}+\sqrt{3}\) mới rút gọn được theo HĐT số 3
\(B=\left(4\sqrt{2}-5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)\)
\(=\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+\sqrt{2}\right)=27-2=25\)
\(C=1-\left(3\sqrt{5}-2\sqrt{5}-\sqrt{3}\right)\left(2\sqrt{5}-3\sqrt{5}-\sqrt{3}\right)\)
\(=1-\left(\sqrt{5}-\sqrt{3}\right)\left(-\sqrt{5}-\sqrt{3}\right)=1+\left(5-3\right)=3\)
\(D=\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{2}{3}}\right).\sqrt{6}=\frac{\left(3-2\right)}{\sqrt{6}}.\sqrt{6}=1\)
\(1.A=\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)=5-4=1\)
\(2.B=\left(\sqrt{45}+\sqrt{63}\right)\left(\sqrt{7}-\sqrt{5}\right)=\left(3\sqrt{5}+3\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)=2\left(7-5\right)=4\) \(3.C=\left(\sqrt{5}+\sqrt{3}\right)\left(5-\sqrt{15}\right)=\sqrt{5}\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=\sqrt{5}\left(5-3\right)=2\sqrt{5}\) \(4.\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)=\left(4\sqrt{2}-5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)=\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+\sqrt{2}\right)=27-2=25\) \(5.E=\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4=4+2\sqrt{3}-2\sqrt{3}+4=8\)
\(6.F=\left(\sqrt{15}-2\sqrt{3}\right)^2+12\sqrt{5}=27-12\sqrt{5}+12\sqrt{5}=27\)
1.\(D=\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\frac{10\sqrt{3}}{3}\)\(=\frac{-17\sqrt{3}}{3}\)
2.\(A=27-\left(\sqrt{32}-\sqrt{50}\right)^2=25\)
\(B=1-\left(\left(-\sqrt{3}\right)^2-\left(\sqrt{20}-\sqrt{45}\right)^2\right)\)\(=1-\left(-2\right)=3\)
\(A=10-\left(\sqrt{32}-\sqrt{8}-\sqrt{27}\right)\left(\sqrt{8}-\sqrt{32}-\sqrt{27}\right)\)
\(A=10-\left[-\sqrt{27}+\left(\sqrt{32}-\sqrt{8}\right)\right]\left[-\sqrt{27}-\left(\sqrt{32}-\sqrt{8}\right)\right]\)
\(A=10-\left[\left(-\sqrt{27}\right)^2-\left(\sqrt{32}-\sqrt{8}\right)^2\right]\)
\(A=10-\left(27-8\right)\)
\(A=-9\)
\(\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)
\(=\left(4\sqrt{2}-5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)\)
\(=\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+\sqrt{2}\right)\)
\(=27-2\)
\(=25\)
\(\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)
\(\Leftrightarrow\left(4\sqrt{2}+3\sqrt{3}-5\sqrt{2}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)\)
\(\Leftrightarrow\left(4\sqrt{2}+3\sqrt{2}-5\sqrt{2}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)\)
\(\Leftrightarrow\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)\)
\(\Leftrightarrow\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+2\right)\)
\(\Leftrightarrow\left(3\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2\)
\(\Rightarrow25\)
Vậy: BT = 25
P/s: từ dòng thứ 2 trở xuống bạn tự phân ... Vấn đề là ở bạn thôi :)))