\(D=\frac{a^3+3^3}{b^3+4^3}\text{ biết }\frac{a+b}{a-3}=\frac{b+4}{b-4}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề \(D=\frac{a^3+3^3}{b^3+4^3}\)biết \(\frac{a+3}{a-3}=\frac{b+4}{b-4}\)

\(\Leftrightarrow\left(a+3\right)\left(b-4\right)=\left(a-3\right)\left(b+4\right)\)

\(\Leftrightarrow ab-4a+3b-12=ab+4a-3b-12\)

\(\Leftrightarrow8a=6b\)

\(\Leftrightarrow\frac{a}{6}=\frac{b}{8}\Leftrightarrow\frac{a}{3}=\frac{b}{4}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=k\)\(\Rightarrow a=3k,b=4k\)

\(\Rightarrow D=\frac{a^3+3^3}{b^3+4^3}=\frac{\left(3k\right)^3+3^3}{\left(4k\right)^3+4^3}\)

\(=\frac{3^3\left(k^3+1\right)}{4^3\left(k^3+1\right)}=\frac{3^3}{4^3}=\frac{27}{64}\)

15 tháng 3 2022

TL: 
8 nhé 

HNJK

14 tháng 4 2020

ea giúp mk vs

thanks trước nha

24 tháng 10 2016

a) Ta có: \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=>\frac{4a}{4c}=\frac{3c}{3d}\)

Theo tín chất dãy tỉ số bằng nhau ta có:

\(\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a+3b}{4c+3d}=\frac{4a-3b}{4c-3d}\)(đpcm)

b) Ta có: \(\frac{a}{b}=\frac{c}{d}=>\frac{a^2}{b^2}=\frac{c^2}{d^2}\)

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=>\frac{a^2+c^2}{b^2+d^2}=\frac{a^2-c^2}{b^2-d^2}\)(đpcm)

21 tháng 10 2016

nhưng x là số gì

 

 

 

9 tháng 7 2018

x ϵ z

25 tháng 8 2018

Bài 1 : Thực hiện phép tính :

a, \(\frac{4}{5}+1\frac{1}{6}\cdot\frac{3}{4}\)

\(\frac{4}{5}+\frac{7}{6}\cdot\frac{3}{4}\)

\(\frac{4}{5}+\frac{7}{8}\)

\(\frac{32+35}{40}=\frac{67}{40}\)

b, \(\frac{2}{3}:\left(\frac{3}{4}\cdot\frac{4}{3}\right)+2\)

\(=\frac{2}{3}:1+2\)

\(=\frac{2}{3}+2=\frac{2+6}{3}=\frac{8}{3}\)

c, \(\frac{1}{2}\times\left(\frac{2}{3}+\frac{3}{5}\cdot\frac{5}{7}\right)+1\frac{1}{3}\)

\(=\frac{1}{2}\cdot\left(\frac{2}{3}+\frac{9}{35}\right)+\frac{4}{3}\)

\(=\frac{1}{2}\cdot\frac{97}{105}+\frac{4}{3}\)

\(=\frac{97}{210}+\frac{4}{3}=\frac{377}{210}\)

Bài 2 : Tìm \(x\inℤ\), biết :

a, \(\frac{2}{3}< \frac{x}{6}\le\frac{10}{3}\)

\(\Leftrightarrow\frac{4}{6}< \frac{x}{6}\le\frac{20}{6}\)

mà \(x\inℤ\Rightarrow\text{x}\in\) {\(5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20\)}

b, \(\frac{1}{3}+x=1\frac{1}{2}\)

\(\frac{1}{3}+x=\frac{3}{2}\)

\(x=\frac{3}{2}+\frac{\left(-1\right)}{3}\)

\(x=\frac{7}{6}\) (loại vì \(x\notinℤ\))

\(\Rightarrow x\in\varnothing\)

c, \(\frac{1}{7}+x=\frac{25}{14}+\frac{5}{14}\)

\(\frac{1}{7}+x=\frac{15}{7}\)

\(x=\frac{15}{7}+\frac{(-1)}{7}\)

\(x=\frac{14}{7}=2\).

17 tháng 6 2020

\(\frac{a+3}{a-3}=\frac{b+4}{b-4}\)

=> \(\frac{a+3}{b+4}=\frac{a-3}{b-4}\)

Áp dụng dãy tỉ số bằng nhau ta có: 

\(\frac{a+3}{b+4}=\frac{a-3}{b-4}=\frac{a+3+a-3}{b+4+b-4}=\frac{2a}{2b}=\frac{a}{b}\)

=> \(\frac{a}{b}=\frac{a+3}{b+4}=\frac{a+3-a}{b+4-b}=\frac{3}{4}\)

=> \(\frac{a^3}{b^3}=\frac{3^3}{4^3}=\frac{a^3+3^3}{b^3+4^3}\)

=> \(A=\frac{a^3+3^3}{b^3+4^3}=\frac{3^3}{4^3}\)

20 tháng 7 2016

Ta có : 

\(\frac{a}{2}=\frac{b}{3};\frac{a}{4}=\frac{c}{9}\)

\(\Rightarrow\frac{a}{4}=\frac{b}{6}=\frac{c}{9}\)

\(\Rightarrow\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{729}\)

Áp dụng c/t tỉ lệ thức = nhau ta có : 

\(\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{729}=\frac{a^3+b^3+c^3}{64+216+729}=\frac{-1009}{1009}=-1\)

  • \(\frac{a^3}{64}=-1\Rightarrow a^3=-64\Rightarrow a=-4\)
  • \(\frac{b^3}{216}=-1\Rightarrow b^3=-216\Rightarrow a=-6\)
  • \(\frac{c^3}{729}=-1\Rightarrow c^3=-729\Rightarrow a=-9\)

Vậy a = -4 b = -6 c = -9