Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
a)\(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\)
\(\Rightarrow\frac{5x}{5.7}=\frac{2y}{2.3}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)
\(\Rightarrow x=3.7=21;y=3.3=9\)
Bài dưới tướng tự nhé
a) -12( x - 5 ) + 7( 3 - x ) = 5
-12x + 60 + 21 - 7x = 5
-19x = 5 -81
-19x = -76
x = 76:19
x= 4
b) 30.( x + 2 ) - 6( x - 5 ) - 24x = 100
30x + 60 - 6x + 30 - 24x = 100
0x = 100 - 60 - 30
0x = 10
=> ko có giá trị x thỏa mãn đề bài
1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)
=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)
Vậy ....
2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)
vậy ...
3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)
\(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)
=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)
Vậy ...
a,\(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\Rightarrow\frac{5x}{35}=\frac{2y}{6}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)
=> x = 21; y = 9
b, \(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
=> x = 38; y = 42
1) \(\left|x-\frac{3}{5}\right|< \frac{1}{3}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{3}{5}< \frac{1}{3}\\x-\frac{3}{5}< -\frac{1}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{1}{3}+\frac{3}{5}\\x< \frac{-1}{3}+\frac{3}{5}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x< \frac{5}{15}+\frac{9}{15}\\x< \frac{-5}{15}+\frac{9}{15}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{14}{15}\\x< \frac{4}{15}\end{cases}}\)
vay \(\orbr{\begin{cases}x< \frac{14}{15}\\x< \frac{4}{15}\end{cases}}\)
2) \(\left|x+\frac{11}{2}\right|>\left|-5,5\right|\)
\(\left|x+\frac{11}{2}\right|>5,5\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{11}{2}>\frac{11}{2}\\x+\frac{11}{2}>-\frac{11}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x>\frac{11}{2}-\frac{11}{2}\\x>\frac{-11}{2}-\frac{11}{2}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>0\\x>-11\end{cases}}\)
vay \(\orbr{\begin{cases}x>0\\x>-11\end{cases}}\)
3) \(\frac{2}{5}< \left|x-\frac{7}{5}\right|< \frac{3}{5}\)
\(\Rightarrow\left|x-\frac{7}{5}\right|>\frac{2}{5}\) va \(\left|x-\frac{7}{5}\right|< \frac{3}{5}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{7}{5}>\frac{2}{5}\\x-\frac{7}{5}>\frac{-2}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x>\frac{2}{5}+\frac{7}{5}\\x>\frac{-2}{5}+\frac{7}{5}\end{cases}}\)va \(\orbr{\begin{cases}x-\frac{7}{5}< \frac{3}{5}\\x-\frac{7}{5}< \frac{-3}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{3}{5}+\frac{7}{5}\\x< \frac{-3}{5}+\frac{7}{5}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>\frac{9}{5}\\x>1\end{cases}}\)va \(\orbr{\begin{cases}x< 2\\x< \frac{4}{5}\end{cases}}\)
vay ....
Câu a :
Ta có :
\(\dfrac{x}{y}=\dfrac{7}{3}\Leftrightarrow\) \(\dfrac{x}{7}=\dfrac{y}{3}\) .
Áp dụng dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{5x}{35}=\dfrac{2y}{6}=\dfrac{5x-2y}{35-6}=\dfrac{87}{29}=3\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{7}=3\Rightarrow x=21\\\dfrac{y}{3}=3\Rightarrow y=9\end{matrix}\right.\)
Vậy ......................
Câu b :
Áp dụng dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{19}=2\Rightarrow x=38\\\dfrac{y}{21}=2\Rightarrow y=42\end{matrix}\right.\)
Vậy ....................
Làm mấy câu bạn kia chưa làm:v
\(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
\(\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)
\(\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{4}\right)^2=\left(\dfrac{z}{6}\right)^2\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)
\(=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{1}{4}.4=1\Rightarrow x=\pm1\\y^2=\dfrac{1}{4}.16=4\Rightarrow y=\pm2\\z=\dfrac{1}{4}.36=9\Rightarrow z=\pm3\end{matrix}\right.\)
377515 + 87 x 34 -7 = 380466
38891 - 6585 x 3 x5 +782 = -59102
k cho mk nha