K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2018

\(A=1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+..+\dfrac{100}{2^{100}}\\ \Rightarrow2A=2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{100}{2^{99}}\\ \Rightarrow A=\dfrac{7}{4}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\\ B=\dfrac{1}{2^3}+...+\dfrac{1}{2^{99}}\\ \Rightarrow2B=\dfrac{1}{2^2}+...+\dfrac{1}{2^{98}}\\ \Rightarrow B=\dfrac{1}{4}-\dfrac{1}{2^{99}}\\ \Rightarrow A=\dfrac{7}{4}+\dfrac{1}{4}-\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\\ =2-\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

1 tháng 11 2018

Ngu

17 tháng 4 2018

2A =2+\(\frac{3}{2^2}\)+\(\frac{4}{2^3}\)+\(\frac{5}{2^4}\)+.....+\(\frac{100}{2^{99}}\)

\(\Rightarrow\)A=2A-A=1+\(\frac{3}{4}\)\(\frac{1}{2^3}\)+\(\frac{1}{2^4}\)+.....+\(\frac{1}{2^{99}}\)-\(\frac{100}{2^{100}}\)

\(\Rightarrow\)2A=2+\(\frac{3}{2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)+....+\(\frac{1}{2^{98}}\)-\(\frac{100}{2^{99}}\)

\(\Rightarrow\)A=2A-A=1+\(\frac{3}{4}\)+\(\frac{1}{4}\)-\(\frac{101}{2^{99}}\)+\(\frac{100}{2^{100}}\)=2-\(\frac{51}{2^{99}}\)

29 tháng 8 2017

\(A=1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...+\dfrac{100}{2^{100}}\)

\(2A=2\left(1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...+\dfrac{100}{2^{100}}\right)\)

\(2A=2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+\dfrac{5}{2^4}+....+\dfrac{100}{2^{99}}\)

\(2A-A=\left(2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+\dfrac{5}{2^4}+...+\dfrac{100}{2^{99}}\right)-\left(1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...+\dfrac{100}{2^{100}}\right)\)\(A=2+\dfrac{3}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

\(A=\dfrac{11}{4}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

\(A=\dfrac{11}{4}+\dfrac{1}{2^3}-\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

29 tháng 8 2017

Đặt \(D=1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+...+\dfrac{100}{2^{100}}\)

\(2D=2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{100}{2^{99}}\)

\(2D-D=\left(2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{100}{2^{99}}\right)-\left(1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+...+\dfrac{100}{2^{100}}\right)\)

\(D=2+\dfrac{3}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

\(D=\dfrac{11}{4}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

\(D=\dfrac{11}{4}+\dfrac{1}{2^3}-\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

21 tháng 4 2018

\(A=1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+...+\dfrac{100}{2^{100}}\)

\(\dfrac{1}{2}\cdot A=\dfrac{1}{2}+\dfrac{3}{2^4}+...+\dfrac{100}{2^{101}}\)

\(A-\dfrac{A}{2}=\dfrac{1}{2A}=\dfrac{1}{2}+\dfrac{3}{2^3}+...+\dfrac{100}{2^{101}}\)

\(\left[\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\right]-\dfrac{100}{2^{101}}\) (do 3/2^3=1/2^2+1/2^3)

\(\left[1-\left(\dfrac{1}{2}\right)^{101}\right]\left(1-\dfrac{1}{2}\right)-\dfrac{100}{2^{101}}\)

\(\left(\dfrac{2^{101-1}}{2^{100}}\right)-\dfrac{100}{2^{101}}\)

\(\Rightarrow A=\dfrac{\dfrac{\left(2^{101-1}\right)}{2^{99}-100}}{2^{100}}\)

22 tháng 5 2017

Giải:

\(A=1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...+\dfrac{100}{2^{100}}\)

\(\dfrac{1}{2}A=\dfrac{1}{2}+\dfrac{3}{2^4}+\dfrac{4}{2^5}+...+\dfrac{99}{2^{100}}+\dfrac{100}{2^{101}}\)

\(A-\dfrac{A}{2}=\dfrac{1}{2A}=\dfrac{1}{2}+\dfrac{3}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{100}}-\dfrac{100}{2^{101}}\)

\(=\left[\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\right]-\dfrac{100}{2^{101}}\) ( Vì \(\dfrac{3}{2^3}=\dfrac{1}{2^2}+\dfrac{1}{2^3}\) )

\(=\dfrac{\left[1-\left(\dfrac{1}{2}\right)^{101}\right]}{\left(1-\dfrac{1}{2}\right)}-\dfrac{100}{2^{101}}\)

\(=\dfrac{\left(2^{101}-1\right)}{2^{100}}-\dfrac{100}{2^{101}}\)

\(\Rightarrow A=\dfrac{\left(2^{101}-1\right)}{2^{99}}-\dfrac{100}{2^{100}}\)

20 tháng 3 2017

A=1+B

B=\(\Sigma\left(\dfrac{x}{2^x}\right)\)( cho x chạy từ 3 đến 100) =1

=> A=1+B=1+1=2ok

30 tháng 3 2018

\(A=1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+.......+\dfrac{100}{2^{100}}\)

\(\Leftrightarrow2A=2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+.........+\dfrac{100}{2^{99}}\)

\(\Leftrightarrow2A-A=\left(2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+......+\dfrac{100}{2^{99}}\right)-\left(1+\dfrac{3}{2^3}+.........+\dfrac{100}{2^{100}}\right)\)

\(\Leftrightarrow A=\dfrac{11}{4}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+......+\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

Đặt :

\(H=\dfrac{1}{2^3}+\dfrac{1}{2^4}+......+\dfrac{1}{2^{99}}\)\(\Leftrightarrow A=\dfrac{11}{4}-H-\dfrac{100}{2^{100}}\)

\(\Leftrightarrow2H=\dfrac{1}{2^2}+\dfrac{1}{2^3}+........+\dfrac{1}{2^{98}}\)

\(\Leftrightarrow2H-H=\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{98}}\right)-\left(\dfrac{1}{2^3}+\dfrac{1}{2^4}+.....+\dfrac{1}{2^{99}}\right)\)

\(\Leftrightarrow H=\dfrac{1}{2^2}-\dfrac{1}{2^{99}}\)

\(\Leftrightarrow A=\dfrac{11}{4}+\dfrac{1}{2^2}-\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

17 tháng 6 2018

a, \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\\ 3B=3+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2003}}+\dfrac{1}{3^{2004}}\\ 3B-B=\left(3+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2003}}+\dfrac{1}{3^{2004}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\right)\\2B=3-\dfrac{1}{3^{2005}}\\ B=\dfrac{3-\dfrac{1}{3^{2005}}}{2}\)

b,

\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\\ 5A=5+5^2+5^3+5^4+...+5^{50}+5^{51}\\ 5A-A=\left(5+5^2+5^3+5^4+...+5^{50}+5^{51}\right)-\left(1+5+5^2+5^3+...+5^{49}+5^{50}\right)\\ 4A=5^{51}-1\\ A=\dfrac{5^{51}-1}{4}\)

c,

\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2-1}\right)......\left(\dfrac{1}{100^2-1}\right)\\ A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{16}-1\right)......\left(\dfrac{1}{10000}-1\right)\\ A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\cdot\cdot\cdot\dfrac{9999}{10000}\\ A=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot\cdot\cdot\cdot\dfrac{99\cdot101}{100\cdot100}\\ A=\dfrac{1\cdot2\cdot3\cdot\cdot\cdot\cdot99}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\cdot\dfrac{3\cdot4\cdot5\cdot\cdot\cdot\cdot101}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\\ A=\dfrac{1}{100}\cdot\dfrac{101}{2}\\ A=\dfrac{101}{200}\)

17 tháng 6 2018

d,

\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\\ A=\left(2^{100}+2^{98}+...+2^2\right)-\left(2^{99}+2^{97}+...+2^1\right)\)

Đặt \(A=B-C\)

\(\Rightarrow B=\left(2^{100}+2^{98}+...+2^2\right)vàC=\left(2^{99}+2^{97}+...+2^1\right)\)

\(B=2^{100}+2^{98}+...+2^2\\ 4B=2^{102}+2^{100}+...+2^4\\ 4B-B=\left(2^{102}+2^{100}+...+2^4\right)-\left(2^{100}+2^{98}+...+2^2\right)\\ 3B=2^{102}-2^2\\ B=\dfrac{2^{102}-2^2}{3}\left(1\right)\)

\(C=2^{99}+2^{97}+...+2^1\\ 4C=2^{101}+2^{99}+...+2^3\\ 4C-C=\left(2^{101}+2^{99}+...+2^3\right)-\left(2^{99}+2^{97}+...+2\right)\\ 3C=2^{101}-2\\ C=\dfrac{2^{101}-2}{3}\left(2\right)\)

Từ (1) và (2) ta có :

\(A=\dfrac{2^{102}-2^2}{3}-\dfrac{2^{101}-2}{3}\\ A=\dfrac{2^{102}-2^2-2^{101}+2}{3}\\ A=\dfrac{2^{102}-2^{101}+2}{3}\)