Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) 19,01 : 0,1 x (208 x 9 +208 )
= 19,01 x 10 x (208 x 9 + 208 x1 )
= 190,1 x [ (9+1) x 208 ]
= 190,1 x 10 x 208
= 1901 x 208 = 395408
B) 2,08 x 100 : 0,01
= 2,08 x 100 x 100
= 208 x 100
= 20800
2/
a) \(\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\)
\(=\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+....+\frac{1}{17}-\frac{1}{21}\right)\)
\(=1-\frac{1}{21}=\frac{20}{21}\)
b) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot..\cdot\frac{2016}{2017}\)
\(=\frac{1}{2017}\)
c) \(A=2000-5-5-5-..-5\)(có 200 số 5)
\(A=2000-\left(5\cdot200\right)\)
\(A=2000-1000\)
\(A=1000\)
a,Đặt \(A=\frac{1}{1\times4}+\frac{1}{4\times7}+...+\frac{1}{97\times100}\)
\(\Rightarrow3A=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{97\times100}\)
\(\Rightarrow3A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow3A=1-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow A=\frac{99}{300}\)
b, \(\frac{1}{2}\times\frac{2}{3}\times...\times\frac{99}{100}=\frac{1\times2\times...\times99}{2\times3\times...\times1000}=\frac{1}{100}\)
c, \(\frac{3}{4}\times\frac{8}{9}\times...\times\frac{99}{100}=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times...\times\frac{9.11}{10.10}=\frac{1.2.....9}{2.3.....10}\times\frac{3.4.....11}{2.3.....10}=\frac{1}{10}\times\frac{11}{2}=\frac{11}{20}\) (dấu . là dấu nhân)
Quên chỗ này:
Sau khi ra kết quả 8645/8645 ta thấy rằng: 8645/8645 = 1
Nên kết quả là: 1 - 1 = 0
Ta có đề bài:\(\frac{\left(1,75:0,25\right)\times\left(12,35\right):0,01}{1,75\times4\times12,35\times100}\)
= \(\frac{7\times1235}{7\times1235}\)
= \(\frac{8645}{8645}\)
Ps: Bài này có thể nhẩm: Bạn thấy rằng 0,25 = 1/4. Vì thế muốn tìm 1 trong 1/4 của 1 số ta lấy số đó chia cho 1/4. Và cũng bằng số đó x 4 : 1 = số đó x 4 = kết quả.
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2002}{2003}\cdot\frac{2003}{2004}\)
\(=\frac{1\cdot2\cdot3\cdot....\cdot2002\cdot2003}{2\cdot3\cdot4\cdot5\cdot....\cdot2003\cdot2004}\)
\(=\frac{1}{2004}\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2003}{2004}=\frac{1\cdot2\cdot3\cdot4....2003}{2\cdot3\cdot4\cdot5....2004}=\frac{1}{2004}\)
\(=\frac{1}{2}\times\frac{2}{3}\times....\times\frac{2003}{2004}\)
\(=\frac{1\times2\times3\times...\times2003}{2\times3\times4\times...\times2014}\)
\(=\frac{1}{2014}\)
\(x\times\left(\frac{2015}{8\times9}+\frac{1925}{9\times10}+\frac{1795}{10\times11}+\frac{1629}{11\times12}+6\right)=\frac{1}{24}\)
=> \(x\times\left(\frac{2015}{72}+\frac{1925}{90}+\frac{1795}{110}+\frac{1629}{132}+6\right)=\frac{1}{24}\)
=> \(x\times84\frac{3}{88}=\frac{1}{24}\Rightarrow x=\frac{1}{24}:\frac{7395}{88}=\frac{1}{24}\times\frac{88}{7395}=\frac{88}{177480}=\frac{11}{22185}\)
\(\frac{19,01\div0,1\times\left(208\times9+208\right)}{2,08\times100\div0,01}\)
\(=\frac{190,1\times\left(208\times9+208\times1\right)}{208\div0,01}\)
\(=\frac{190,1\times\left[208\times\left(9+1\right)\right]}{20800}\)
\(=\frac{190,1\times\left[208\times10\right]}{20800}\)
\(=\frac{190,1\times2080}{20800}\)
\(=\frac{190,1\times10\times208}{100\times208}\)
\(=\frac{1901}{100}\)
\(\frac{19,01\div0,1\times(208\times9+208)}{2,08\times100\div0,01}\)
\(=\frac{19,01\div\frac{1}{10}\times(208\times9+208\times1)}{208\div\frac{1}{100}}\)
\(=\frac{19,01\times10\times\left[208\times(9+1)\right]}{208\times100}\)
\(=\frac{19,01\times100\times208\times10}{208\times100}=19,01\times10=190,1\)