Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(N=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(N=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
\(3N=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\)
\(3N=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(3N=\frac{1}{2}-\frac{1}{20}\)
\(3N=\frac{9}{20}\)
\(N=\frac{9}{20}:3\)
\(N=\frac{3}{20}\)
Vậy \(N=\frac{3}{20}\)
Chúc bạn học tốt ~
\(N=\frac{1}{10}+\frac{1}{40}+...+\frac{1}{238}+\frac{1}{340}\)
\(N=\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{14.17}+\frac{1}{17.20}\)
\(N=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(N=\frac{1}{2}-\frac{1}{20}\)
\(N=\frac{10}{20}-\frac{1}{20}\)
\(N=\frac{9}{20}\)
\(\Rightarrow\left[\frac{1}{2\times5}+\frac{1}{5\times8}+...+\frac{1}{17\times20}\right]\cdot\frac{2x}{10}\)
\(\Rightarrow\left[\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right]\right]\cdot20=\frac{2x}{10}\)
\(\Rightarrow\left[\frac{1}{3}\left[\frac{1}{2}-\frac{1}{20}\right]\right]\cdot20=\frac{2x}{10}\)
\(\Rightarrow\left[\frac{1}{3}\cdot\frac{9}{20}\right]\cdot20=\frac{2x}{10}\)
\(\Rightarrow\frac{3}{20}\cdot20=\frac{2x}{10}\)
\(\Rightarrow3\cdot20=\frac{2x}{10}\Leftrightarrow60=\frac{2x}{10}\)
=> 2x = 60*10
=> 2x = 600
=> x = 300
\(\left(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+...+\frac{1}{340}\right).20=\frac{2x}{10}\)
\(\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{17.20}\right).20=\frac{2x}{10}\)
\(\left[3.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)\right].20=\frac{2x}{10}\)
\(\left[3.\left(\frac{1}{2}-\frac{1}{20}\right)\right].20=\frac{2x}{10}\)
\(\left(3.\frac{9}{20}\right).20=\frac{2x}{10}\)
\(\frac{27}{20}.20=2x\div10\)
\(27=2x\div10\)
\(x=27\times10\div2\)
\(\Rightarrow x=135\)
\(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+\frac{3}{4.5}+\frac{3}{5.6}+...+\frac{3}{9.10}+\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}\)
Gọi \(\left(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+......+\frac{3}{9.10}\right)\)là \(A\); \(\left(\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}\right)\)là B . Ta có :
\(A=\frac{3}{1}.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=\frac{3}{1}.\left(\frac{1}{1}-\frac{1}{10}\right)\)
\(A=\frac{3}{1}\cdot\frac{9}{10}=\frac{27}{10}\)
\(B=\frac{77}{7}\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{6}-\frac{1}{16}+\frac{1}{16}-\frac{1}{23}+....+\frac{1}{93}-\frac{1}{100}\right)\)
\(B=\frac{77}{7}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(B=\frac{77}{7}\cdot\frac{49}{100}=\frac{539}{100}\)
\(\Rightarrow\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+\frac{3}{4.5}+...+\frac{3}{9.10}+\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}=\frac{27}{10}+\frac{539}{100}=\frac{809}{100}\)
\(\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)
\(=\frac{4}{3}\cdot\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\right)\)
\(=\frac{4}{3}\cdot\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{4}{3}\cdot\frac{4}{15}=\frac{16}{45}\)
A=1/3x(1/2x5+1/5x8+......+1/20x23)
A=1/3x(1/2-1/5+1/5-1/8+......+1/20-1/23)
A=1/3x(1/2-1/23)
A=1/3x21/46
A=7/46
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\)
\(=\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\right)\cdot5\cdot\frac{1}{5}\)
\(=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\right)\cdot\frac{1}{5}\)
\(=\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...-\frac{1}{256}\right)\cdot\frac{1}{5}\)
\(=\left(1+1-\frac{1}{256}\right)\cdot\frac{1}{5}\)
\(=\left(2-\frac{1}{256}\right)\cdot\frac{1}{5}\)
\(=\frac{511}{256}\cdot\frac{1}{5}\)
\(=\frac{511}{1280}\)
\(1:\frac{1}{10}=1.\frac{10}{1}=\frac{10}{1}=10\)
\(\frac{1}{10}:\frac{1}{100}=\frac{1}{10}.\frac{100}{1}=\frac{100}{10}=10\)
\(\frac{1}{100}:\frac{1}{1000}=\frac{1}{100}.\frac{1000}{1}=\frac{1000}{100}=10\)
\(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}\)
\(=\frac{1}{2}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{7}\right)\)
\(=\frac{1}{2}.\frac{6}{7}=\frac{3}{7}\)
Đặt \(C=\frac{1}{2}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{84}\)
\(\Rightarrow\frac{C}{2}=1+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{42}\)
\(\Rightarrow C.\frac{1}{2}=1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}\)
\(\Rightarrow C.\frac{1}{2}=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}\)
\(\Rightarrow C.\frac{1}{2}=1+\frac{1}{2}-\frac{1}{7}\)
\(\Rightarrow C=\left(1+\frac{1}{2}-\frac{1}{7}\right).2\)
\(1\frac{1}{3}\times1\frac{1}{4}\times1\frac{1}{5}\times1\frac{1}{6}\times1\frac{1}{7}\times1\frac{1}{8}\)
\(=\frac{4}{3}\times\frac{5}{4}\times\frac{6}{5}\times\frac{7}{6}\times\frac{8}{7}\times\frac{9}{8}\)
\(=\frac{9}{3}\)
\(=3\)
= 4/3 x 5/4 x 6/5 x 7/6 x 8/7 x 9/8
= 4x5x6x7x8x9/3x4x5x6x7x8 = 9/3 = 3
k mk nha
Ta có:\(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+....+\frac{1}{340}=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{17.20}\)
= \(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+.....+\frac{1}{17}-\frac{1}{20}\right)=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{1}{3}.\frac{9}{20}=\frac{3}{20}\)
\(=\frac{3}{20}=0,15\)