Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này khi sáng mình mới học 100% là đúng luôn.
1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + ........... + 1/99x100.
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+..........1/98-1/99+1/99-1/100.
=1/1-1/100=99/100.
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
Có \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}=+....+\frac{1}{99}-\frac{1}{100}\)
\(=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
=\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
= \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
=> \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right):\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=1\)
(2/2 + 3/6 + 4/12 + 6/30) nhân 10 - x=0
(9/6+5/4) nhân 10 -x=0
11/4 nhân 10 - x= 0
2,75 nhân 10 -x=0
27.5 - x=0
x=27.5 - 0= 27.5
dùm mình nha...
1/5x6 sửa thành 1/4x5 nhé!
(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5)x10-x=0
(1-1/5)x10-x=0
4/5x10-x=0
8-x=0
x=8-0=8
ta có:\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+...+\frac{1}{100}\)
\(\frac{2012}{51}+\frac{2012}{52}+...+\frac{2012}{100}=2012\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)
bài toán được viết lại như sau:
\(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right).x=2012\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)
\(\Rightarrow x=2012\left(\frac{1}{51}+...+\frac{1}{100}\right):\left(\frac{1}{51}+...+\frac{1}{100}\right)\)
\(\Rightarrow x=2012\)
vậy x=2012
1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + 1/6x7
=1/1-1/2+1/2-1/3+...-1/7
=1+(1/2-1/2+1/3-1/3+...+1/6-1/6)-1/7
=1 +0+0+...-1/7
=1-1/7
=6/7
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)\(=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)+\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
b) \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}\)\(=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{110}\)
\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
c) \(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{97.99}\) \(=\frac{13-11}{11.13}+\frac{15-13}{13.15}+\frac{17-15}{15.17}+...+\frac{99-97}{97.99}\)
\(=\frac{1}{11}+\frac{1}{13}-\frac{1}{13}+\frac{1}{15}-\frac{1}{15}+\frac{1}{17}...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{11}-\frac{1}{99}=\frac{8}{99}\)
Nhân S với 2 ta được:
S = 2/1x2x3 + 2/2x3x4 + 2/3x4x5 + ... + 2/98x99x100
= (1/1x2 – 1/2x3) + (1/2x3 – 1/3x4) + (1/3x4 – 1/4x5) + …….. + (1/98x99 – 1/99x100)
= 1/1x2 – 1/99x100 = 1/2 – 1/9900 = 9898/19800
Vậy:
S = 1/1x2x3 + 1/2x3x4 + 1/3x4x5 + ... + 1/98x99x100
= 9898/19800 : 2
S = 4949/19800