Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{4}{4.5}+\frac{4}{5.6}+\frac{4}{6.7}+...+\frac{4}{47.48}\)
\(A=4.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+......+\frac{1}{47.48}\right)\)
\(A=4.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+.....+\frac{1}{47}-\frac{1}{48}\right)\)
\(A=4.\left(\frac{1}{4}-\frac{1}{48}\right)\)
\(A=4.\frac{11}{48}\)
\(A=\frac{11}{12}\)
bài A: áp dụng công thức: 1 + 2 + 3 + ... + n = n x (n + 1) : 2 tính được 5050
bài B: áp dụng công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\) rồi triệt tiêu gần hết, qui đồng mẫu số tính được B = 99/100
A = 1 + 2 + 3 + 4 + 5 + ... + 99 + 100
= ( 100 + 1 ) x 100 : 2 = 5050
Vậy A = 5050
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Vậy \(B=\frac{99}{100}\)
Học tốt #
a,(11/15+4/15)+(5/7+2/7)
=1+1
=2
b,5/9x(1/2+6/4)
=5/9x2
=10/9
c,1/2:(7/8+9/8)
=1/2:2
=1
d,(17/10-7/10)+1/2
=1+1/2
=3/2
a) \(\frac{11}{15}+\frac{5}{7}+\frac{2}{7}+\frac{4}{15}=\left(\frac{11}{15}+\frac{4}{15}\right)+\left(\frac{5}{7}+\frac{2}{7}\right)\)
\(=2\)
b) \(\frac{5}{9}\times\frac{1}{2}\times\frac{5}{9}\times\frac{6}{4}=\frac{25}{81}\times\frac{3}{4}=\frac{25}{108}\)
c) \(\frac{7}{8}\div\frac{1}{2}+\frac{9}{8}\div\frac{1}{2}=\left(\frac{7}{8}+\frac{9}{8}\right)\div\frac{1}{2}\)
\(=2\div\frac{1}{2}=4\)
d) \(\frac{17}{10}+\frac{1}{2}-\frac{7}{10}=\left(\frac{17}{10}-\frac{7}{10}\right)+\frac{1}{2}\)
\(=1+\frac{1}{2}=\frac{3}{2}\)
a) \(\frac{11}{15}+\frac{5}{7}+\frac{2}{7}+\frac{4}{15}\)
\(=\left(\frac{11}{15}+\frac{4}{15}\right)+\left(\frac{5}{7}+\frac{2}{7}\right)\)
\(=1+1\)
\(=2\)
b) \(\frac{5}{9}.\frac{1}{2}.\frac{5}{9}.\frac{6}{4}\)
\(=\left(\frac{5}{9}\right)^2\left(\frac{1}{2}.\frac{6}{4}\right)\)
\(=\frac{25}{81}.\frac{3}{4}\)
\(=\frac{25}{108}\)
c) \(\frac{7}{8}:\frac{1}{2}+\frac{9}{8}:\frac{1}{2}\)
\(=\frac{7}{8}.2+\frac{9}{8}.2\)
\(=2\left(\frac{7}{8}+\frac{9}{8}\right)\)
\(=2.\frac{16}{8}\)
\(=2.2\)
\(=4\)
d) \(\frac{17}{10}+\frac{1}{2}-\frac{7}{10}\)
\(=\left(\frac{17}{10}-\frac{7}{10}\right)+\frac{1}{2}\)
\(=1+\frac{1}{2}\)
\(=\frac{2}{2}+\frac{1}{2}\)
\(=\frac{3}{2}\)
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right).100-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)
\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right).100-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)
\(\left(1-\frac{1}{10}\right).100-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)
\(90-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)
\(\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=1\)
\(\frac{5}{2}:\left(x+\frac{266}{100}\right)=\frac{1}{2}\Rightarrow x+\frac{266}{100}=5\Rightarrow x=\frac{117}{50}\)
Vậy x = 117/50
Ta có:
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right).100\\ =\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right).100\)
\(=\left(1-\frac{1}{10}\right).100\)
\(=\frac{9}{10}.100\)
= 90
Khi đó đề bài sẽ thành : \(90-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)
\(\Rightarrow\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=1\)
\(\Rightarrow\frac{5}{2}:\left(x+\frac{266}{100}\right)=\frac{1}{2}\)
\(\Rightarrow x+\frac{266}{100}=5\)
\(\Rightarrow x=\frac{117}{50}\)
Vậy \(x=\frac{117}{50}\)
C=\(\frac{7}{3.4}\)-\(\frac{9}{4.5}\)+\(\frac{11}{5.6}\)+\(\frac{13}{6.7}\)+\(\frac{15}{7.8}\)-\(\frac{17}{8.9}\)+\(\frac{19}{9.10}\)
=\(\frac{1}{3}\)+\(\frac{1}{4}\)-\(\frac{1}{4}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)+\(\frac{1}{6}\)-\(\frac{1}{6}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)+\(\frac{1}{8}\)-\(\frac{1}{8}\)-\(\frac{1}{9}\)+\(\frac{1}{9}\)+\(\frac{1}{10}\)
=\(\frac{1}{3}\)+\(\frac{1}{10}\)=\(\frac{13}{30}\)
fddddddddddddddddddddddddddddddddddddddddđ