Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(=1-\frac{1}{51}=\frac{50}{51}\)
2/1.3 + 2/3.5 + 2/5.7 + ... + 2/49 . 51
= 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/49 . 51
= 1 + 51 = 52
ta có 2/n(n+2)=1/n-1/(n+2)
nên 2/3.5=1/3-1/5
2^2/3.5+2^2/5.7+2^2/7.9+...+2^2/49.51
=2.{2/3.5+2/5.7+..+2/49.51}
=2{1/3-1/5+1/5-1/7+...+1/49-1/51}
=2{1/3-1/51}=32/51
TÍNH NHANH
B=2 phần 1.3 + 2 phần 3.5 + 2 phần 5.7 +................+ 2 phần 99.101
(Giải thích rõ nha)
B=\(\frac{2}{1.3}+\frac{2}{3.5}+..........+\frac{2}{99.101}\)
B=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...........+\frac{1}{99}-\frac{1}{101}\)
B=\(1-\frac{1}{101}\)
B=\(\frac{100}{101}\)
Vì 2 tia Ox và Oy đối nhau \(\Rightarrow\)\(\widehat{xOy}=180^0\)
Vì \(\widehat{xOy}=180^0\)nên Oz nằm giữa Ox và Oy
\(\Rightarrow\widehat{xOy}=\widehat{xOz}+\widehat{yOz}=180^0\)
Theo bài ra ta có: \(\widehat{xOz}+40^0=\widehat{yOz}\)
\(\Rightarrow\widehat{yOz}-\widehat{xOz}=40^0\)
\(\Rightarrow\widehat{xOz}=\left(180^0-40^0\right)\div2=70^0\)
\(\widehat{yOz}=70^0+40^0=110^0\)
A bn lướt xuống dưới mà xem cách làm
nhưng của bn là cho 3 ra ngoài nha
3.2/1.3.2+3.2/3.5.2+3.2/5.7.2+...+3.2/49.51
3/2(2/1.3+2/3.5+2/5.7+....+2/49.51)
3/2(1-1/3+1/3-1/5+1/5-1/7+....+1/49-1/51)
3/2(1-1/51)
3/2 . 50/51
25/17
áp dụng công thức nếu có thừa số thứ 2 ở mẫu trừ đi thừa số thứ 1 bằng số trên tử thi \(\frac{1}{a}-\frac{1}{b}\) ab ở đây là 2 thừa số ở mẫu
VD;3/1.3+3/3.5+...+3/49.51(vì tất cả mẫu trừ cho nhau đều =tử)
nên = 1/1-1/3+1/3+1/5+...+1/49-1/51
=1-1/51
=50/51
3) Ta có : \(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
4)
A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
A = \(\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}.\left(\frac{1}{99}-\frac{1}{101}\right)\)
A = \(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
A = \(\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(A=\frac{1}{2}.\frac{100}{101}\)
A = \(\frac{50}{101}\)
2, đặt tên biểu thức trên là A. Ta có :
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(A=1-\frac{1}{101}\)
\(A=\frac{100}{101}\)
1) \(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(=1-\frac{1}{5}\)
\(=\frac{4}{5}\)
B=50/51 bạn ạ.
50/51 bạn nhé