Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta gọi tổng trên là A
A = 1 + 2 + 4 + 8 + ... + 256 + 512
A x 2 = 2 + 4 + 8 + 16 + ... + 256
A x 2 - A = 2 + 4 + 8 + 16 + ... + 512 + 1024 - 1 + 2 + 4 + 8 + ... + 256 + 512
A = 1024 - 1 = 1023
Đáp số: 1023
A=1-1/2+1/2-1/4+1/4-1/8+1/8-1/16+1/16-1/32+1/32-1/64
A=1- bạn gạch chéo từ 1/2(đầu tiên) đến 1/32 nha
A=1-1/64=65/64.
B=Bạn làm tương tự như trên nha
k mik nha. Thanks. Chúc bạn học tốt!!!
a) A=1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
2A=1+1/2+1/4 + 1/8 + 1/16 + 1/32
2A-A= 1+1/2+1/4+1/8+1/16+1/32-(1/2+1/4+1/8+1/16+1/32+1/64)
A= 1-1/64=63/64
b) B= 1/4+1/8+1/16+......+1/512
2B= 1/2+1/4+1/8+1/16+......+1/256
2B-B=1/2+1/4+1/8+1/16+.....+1/256-(1/4+1/8+1/16+.....+1/512)
B=1/2-1/512=255/512
a) \(D=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+...+\frac{1}{512}+\frac{1}{1024}\)
=> \(2D=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...++\frac{1}{256}+\frac{1}{512}\)
=> \(2D-D=\left(1+\frac{1}{2}+...+\frac{1}{512}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)\)
=> \(D=1-\frac{1}{1024}\)
b) \(Đ=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(=1-\frac{1}{20}=\frac{19}{20}\)
a) D=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\dots+\frac{1}{512}+\frac{1}{1024}.\)
\(D=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\dots+\frac{1}{512}-\frac{1}{1024}\)
\(D=1-\frac{1}{1024}\)
\(D=\frac{1023}{1024}\)
\(Đ=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\dots+\frac{1}{18\cdot19}+\frac{1}{19\cdot20}\)
\(Đ=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\dots+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(Đ=1-\frac{1}{20}\)
\(Đ=\frac{19}{20}\)
Phần c như kiểu sai đề chỗ cuối hay sao ấy.
Đặt S = 1/2 + 1/4 + 1/8 + 1/16 + ...
==> 2S = 1 + 1/2 + 1/4 + 1/8 + 1/16 + ...
2S = 1 + S
==> S = 1
a, S = 1/2 + 1/4 + 1/8 +........+ 1/512
= \(\frac{1}{1.2}+\frac{1}{2.2}+\frac{1}{2.4}+...+\frac{1}{4.128}\)
\(\Rightarrow S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{4}-\frac{1}{128}\)
\(S=1-\frac{1}{128}=\frac{127}{128}\)
S = 1/2 + 1/4 + 1/8 + ... + 1/512
2S = 2 x ( 1/2 + 1/4 + 1/8 + ... + 1/512 )
2S = 1 + 1/2 + 1/4 + ... + 1/256
2S - S = ( 1 + 1/2 + 1/4 + ... + 1/256 ) - ( 1/2 + 1/4 + 1/8 + ... + 1/512 )
S = 1 - 1/512
S = 511/512