Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{255+399\cdot255+1}{255\cdot399+1\cdot399-143}\)
\(=\dfrac{255\cdot399+256}{255\cdot399+256}=1\)
a) \(\frac{399\cdot45+55\cdot399}{1995\cdot1996-1991\cdot1995}\)
\(=\frac{399\cdot\left(45+55\right)}{1995\cdot\left(1996-1991\right)}\)
\(=\frac{399\cdot100}{1995\cdot5}\)
\(=4\)
=))
a) \(\frac{399\cdot45+55\cdot399}{1995\cdot1996-1991\cdot1995}\)
\(=\frac{399\cdot\left(45+55\right)}{1995\cdot\left(1996-1991\right)}\)
\(=\frac{399\cdot100}{1995\cdot5}\)
\(=4\)
=))
Ta có : \(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}+\frac{1}{2^8}\)
\(\Rightarrow2A=1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^6}+\frac{1}{2^7}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^6}+\frac{1}{2^7}\right)-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}+\frac{1}{2^8}\right)\)
\(\Rightarrow A=1-\frac{2}{8}=\frac{256}{256}-\frac{1}{256}=\frac{255}{256}\)
A=39760. b=158692,1211