Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{1000}+\frac{13}{1000}+\frac{25}{1000}+\frac{37}{1000}+...+\frac{121}{1000}+\frac{133}{1000}\)
\(=\frac{1+13+25+37+...+121+133}{1000}\)
\(=\frac{804}{1000}=\frac{201}{250}\)
3/2+7/6+13/12+21/20+...+133/132
=1+ 1/2 + 1+ 1/6 + 1+ 1/12 + 1+ 1/20+......+ 1+ 1/132
=(1+ 1 + 1+.....+ 1) + ( 1/2+ 1/6+1/12+ 1/20+....+ 1/132)
= 11+ ( 1/1×2+ 1/2×3+1/3×4+1/4×5+.....+1/11×12)
=11+ ( 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+......+1/11-1/12)
=11+(1-1/12)
= 11+11/12
=143/12
3/2+7/6+13/12+21/20+...+133/132 =1+ 1/2 + 1+ 1/6 + 1+ 1/12 + 1+ 1/20+......+ 1+ 1/132 =(1+ 1 + 1+.....+ 1) + ( 1/2+ 1/6+1/12+ 1/20+....+ 1/132) = 11+ ( 1/1×2+ 1/2×3+1/3×4+1/4×5+.....+1/11×12) =11+ ( 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+......+1/11-1/12) =11+(1-1/12) = 11+11/12 =143/12
M =1/1000+13/1000+25/1000+37/1000+...+121/1000+133/1000
\(M=\frac{1+13+25+...+133}{1000}\)
\(M=\frac{\left(133+1\right)\times12:2}{1000}\)
\(M=\frac{804}{1000}=0,804\)
b:3=1/2+1/4+1/8+1/16+1/32+1/64+1/128
[b:3]x2=1+1/2+1/4+1/8+1/16+1/32+1/64
[b:3]x2-[b:3]=1+1/2+1/4+1/8+1/16+1/32+1/64-1/2+1/4+1/8+1/16+1/32+1/64+1/128
b:3=1-1/128
b:3=127/128
b=127/128x3
b=381/128
B.2=\(3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\frac{3}{16}+\frac{3}{32}+\frac{3}{64}\)\(+\frac{3}{128}\)
B.2-B=\(\left(3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\frac{3}{16}+\frac{3}{32}+\frac{3}{64}+\frac{3}{128}\right)\).\(\left(\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\frac{3}{16}+\frac{3}{32}+\frac{3}{64}+\frac{3}{128}\right)\)
B=3-\(\frac{3}{128}\)
B=\(\frac{381}{128}\)
138-3+8=141+8=149
138-3*8 chu