K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2016

Ta có :

\(D=1.1!+2.2!+...+100.100!\)

\(=\left(2-1\right)1!+\left(3-1\right).2!+\left(4-1\right).3!+...+\left(101-1\right).100!\)

\(=2!-1!+3!-2!+4!-3!+...+101!-100!\)

\(=101!-1!\)

Số quá lớn nhé :)

22 tháng 4 2017

2.2+3.3+4.4+...+100.100

= 22+32+42+...+1002

= 12+22+32+...+1002-1

=\(\dfrac{100.\left(100+1\right).\left(2.100+1\right)}{6}\)-1

=338350-1

=338349

13 tháng 8 2016

A= \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{100}=\frac{99}{100}\)

=> A= \(\frac{99}{100}>\frac{25}{26}\)

25 tháng 8 2017

A=1+1+1+...+1

A=100x1

A=100

11 tháng 8 2016

 Ta có : 1/[n x (n - 1)] = [(n - 1) - n] / [n x (n - 1)] = 1/n - 1/(n - 1) 
Áp dụng : 1/(1x2) + 1/(2x3) + 1/(3x4) + ... + 1/(48x49) + 1/(49x50) 
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/48 - 1/49 + 1/49 - 1/50 
= 1 - 1/50 < 1 
Vậy : 1/(1x2) + 1/(2x3) + 1/(3x4) + ... + 1/(48x49) + 1/(49x50) < 1 
Ta có : 1/(n x n) < 1/[(n - 1) x n] 
1/(2x2) < 1/(1x2) 
1/(3x3) < 1/(2x3) 
1/(4x4) < 1/(3x4) 
............. 
1/(49x49) < 1/(49x49) 
1/(50x50) < 1/(49x50) 
=> 1/(2x2) + 1/(3x3) + 1/(4x4) + ... 1/(49x49) + 1/(50x50) < 1/(1x2) + 1/(2x3) + 1/(3x4) + ... + 1/(48x49) + 1/(49x50) < 1 
Vậy 1/(2x2) + 1/(3x3) + 1/(4x4) + ... 1/(49x49) + 1/(50x50) < 1

11 tháng 8 2016

Đặt B=1/1*2+1/2*3+...+1/99*100 

Ta thấy:

A=1/2*2+1/3*3+...+1/100*100<B=1/1*2+1/2*3+...+1/99*100   (1)

Ta lại có: 

B=1/1*2+1/2*3+...+1/99*100 

=1-1/2+1/2-1/3+...+1/99-1/100

=1-1/100<1 (2)

Từ (1) và (2) ta có: A<B<1 <=>A<1

 

11 tháng 8 2016

A = 1

nha bạn  mình chắc chắn

11 tháng 8 2016

nhưng cách lm như têk nào hả bạn