K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 1 2024

Bạn xem đã viết đúng đề chưa nhỉ. Các thừa số đang cách nhau 3 đơn vị tự nhiên xuất hiện 7 x 11 có 2 thừa số cách nhau 4 đơn vị?

20 tháng 1 2024

S = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.11}\) + \(\dfrac{3}{11.14}\) + \(\dfrac{3}{14.17}\)

S = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{4}{7.11}\) - \(\dfrac{1}{7.11}\) + \(\dfrac{3}{11.14}\) + \(\dfrac{3}{14.17}\)

S = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{4}{7.11}\) + \(\dfrac{3}{11.14}\) + \(\dfrac{3}{14.17}\) - \(\dfrac{1}{7.11}\)

S = \(\dfrac{1}{1}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{11}\) + \(\dfrac{1}{11}\) - \(\dfrac{1}{14}\) + \(\dfrac{1}{14}\) - \(\dfrac{1}{17}\) - \(\dfrac{1}{77}\)

S = \(\dfrac{1}{1}\) - \(\dfrac{1}{17}\) - \(\dfrac{1}{77}\)

S = \(\dfrac{16}{17}\) - \(\dfrac{1}{77}\)

S = \(\dfrac{1215}{1309}\)

=1-1/4+1/4-1/7+1/7-...+1/37-1/40

=1-1/40=39/40

21 tháng 5 2022

Mình cần gấp ạ. Mốt mik thi rồi

21 tháng 4 2016

S=3/1.4+3/4.7+3/7.10+.....+3/40.43+3/43.46

S= 1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46

S= 1-1/46

=> S<1

24 tháng 4 2016

S=3.(1/1-1/4+1/4-1/7+.........+1/40-1/43+1/43-1/46)          

S=3.(1/1-1/46)

S=3.45/46

S=2/43/46

=> 2/43/46>1

=>S>1

30 tháng 4 2016

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}\)

\(S=1-\frac{1}{46}<1\)

=>chứng minh bị sai hoặc đề sai

30 tháng 4 2016

S=\(\frac{3}{1.4}+\frac{3}{4.7}+...........+\frac{3}{43.46}\)

=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...........+\frac{1}{43}-\frac{1}{46}\)

=\(1-\frac{1}{46}<1\)

\(\Rightarrow S<1\)

21 tháng 4 2019

\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{91.94}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{91}-\frac{1}{94}\)

\(=1-\frac{1}{94}=\frac{93}{94}\)

21 tháng 4 2019

\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{91\cdot94}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{91}-\frac{1}{94}\)

\(=1-\frac{1}{94}\)

\(=\frac{93}{94}\)

_Hok tốt_

1 tháng 5 2015

= 1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46

= 1 - 1/46 = 45/46 < 1

23 tháng 4 2016

Cho S=3/1x4+3/4x7+3/7x10+...+3/40x43+3/43x46. Hãy chứng tỏ S<1

ĐPM : S < 1

23 tháng 4 2016

S=3/1x4+3/4x7+3/7x10+...+3/40x43+3/43x46

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}\)

\(S=1-\frac{1}{46}\)

=>S<1

10 tháng 8 2020

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\)

\(=1-\frac{1}{97}\)

\(=\frac{96}{97}\)

10 tháng 8 2020

Bài làm:

Ta có: \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\)

\(=1-\frac{1}{97}\)

\(=\frac{96}{97}\)

21 tháng 1 2020

Ta có:

S=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)

S=\(1-\frac{1}{n+3}\)

=>S<1

Vậy S<1

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)

21 tháng 1 2020

Sory mình bấm bị lỗi