Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Giải:
ĐK: \(a\ne-b\)
Ta có:
\(3a^2+b^2=4ab\)
\(\Leftrightarrow4a^2-4ab+b^2-a^2=0\)
\(\Leftrightarrow\left(2a-b\right)^2-a^2=0\)
\(\Leftrightarrow\left(3a-b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3a-b=0\\a-b=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=\dfrac{b}{3}\\a=b\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=\dfrac{b}{3}\Leftrightarrow P=\dfrac{\dfrac{b}{3}-b}{\dfrac{b}{3}+b}=\dfrac{-1}{2}\\a=b\Leftrightarrow P=\dfrac{a-a}{a+a}=\dfrac{0}{2a}=0\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}P=\dfrac{-1}{2}\\P=0\end{matrix}\right.\)
a. (0,125)3 . 512
= \(\frac{1}{512}\).512
= 1
b. \(\left(\frac{90}{15}\right)^3\)
= 63 = 216
c. [(0,1)3]
= \(\frac{1}{1000}\)
d. \(\left[\left(\frac{-1}{27}\right)^3\right]^6\)
= \(\left(-\frac{1}{27}\right)^{18}\)
Ta có : a³ + b³ + c³ = 3abc
<=> (a + b + c)(a² + b² + c² - ab - bc - ca) = 0
Hoặc a + b + c = 0
Hoặc (a² + b² + c² - ab - bc - ca) = 0
TH1: a + b + c = 0 => a = -(b + c); b = -( a + c); c = -( a + b)
=> A = [1 - (b +c)/b][1 - (a + c)/c] [1 - (a + b)/a]
=> A =[1 - 1 - c/b] [1 - 1 - a/c] [1 - 1 - b/a]
=> A = (-c/b)(-a/c)(-b/a) = -1
TH2: (a² + b² + c² - ab - bc - ca) = 0 <=> (a - b)² +(b - c)² + (c - a)² = 0
=> a - b = b - c = c - a = 0 hay a = b = c
=> A = (1 + 1)(1 + 1)(1+ 1) = 8
e)đặt A=2^2+4^2+6^2+...+98^2+100^2
=2.2+4.4+6.6+...+98.98+100.100
=2.(4-2)+4.(6-2)+6.(8-2)+...+98.(100-2)+100.(102-2)
=2.4-4+4.6-8+6.8-12+...+98.100-196+100.102-200
=(2.4+4.6+6.8+...+98.100+100.102)-(4+8+12+...+196+200)
Đặt B=2.4+4.6+6.8+...+98.100+100.102
6B=2.4.6+4.6.6+...+98.100.6+100.102.6
=2.4.6+4.6.(8-2)+...+98.100.(102-96)+100.102.(104-98)
=2.4.6+4.6.8-2.4.6+...+98.100.102-96.98.100+100.102.104-98.100.102
=(2.4.6-2.4 .6)+...+(98.100.102-98.100.102)+100.102.104
=100.102.104
B=100.102.104/6=100.17.104=176800
Đặt C=4+8+12+...+196+200 Có 50 số hạng Công thức tính số các số hạng (số cuối-số đầu):khoảng cách+1
=(200+4).50/2=5100 Công thức tính tổng số các số hạng (số cuối +số đầu ). số các số hạng :2
Ta có A=176800-5100=171700
f) làm tương tự,hơi dài nên đành làm vậy,xin lỗi nha,nếu mà khó quá kết bạn với tớ ,tớ giải cho nha
Gợi ý đặt A=..
=...
=...
Đặt B=...
6B=...
=...
=...
Đặt C=...
=...
Ta có
1
\(A=\frac{2019^{2019}+1}{2019^{2020}+1}< \frac{2019^{2019}+1+2018}{2019^{2020}+1+2018}=\frac{2019^{2019}+2019}{2019^{2020}+2019}=\frac{2019\left(2019^{2018}+1\right)}{2019\left(2019^{2019}+1\right)}\)
\(=\frac{2019^{2018}+1}{2019^{2019}+1}\)
2
\(M=\frac{100^{101}+1}{100^{100}+1}< \frac{100^{101}+1+99}{100^{100}+1+99}=\frac{100^{101}+100}{100^{100}+100}=\frac{100\left(100^{100}+1\right)}{100\left(100^{99}+1\right)}\)
\(=\frac{100^{100}+1}{100^{99}+1}=N\)
P = x3 - 6x2 + 12x -8 + 6(x2 - 2x + 1 ) - (x3 + 1 )
= x3 - 6x2 + 12x -8 + 6x2 - 12x + 6 - x3 - 1
= -3
\(\Rightarrow\)P ko phụ thuộc vào giá trị của x
#mã mã#
Theo 7 hằng đẳng thức đáng nhớ ta có :
a ) \(101^2-2.101+1=\left(101-1\right)^2=100^2=10000\)
b ) \(99.101=\left(100-1\right)\left(100+1\right)=100^2-1^2=10000-1=9999\)
c ) \(99^2+2.99+1=\left(99+1\right)^2=100^2=10000\)