Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A= dãy số trên.Ta có:
5A= \(\frac{5}{11x16}+\frac{5}{16x21}+...+\frac{5}{61x66}\)
=> 5A= \(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
=> 5A = \(\frac{1}{11}-\frac{1}{66}\)
=> 5A= \(\frac{5}{66}\)
=> A=\(\frac{1}{66}\)
\(=\frac{1}{5}\left(\frac{5}{11.16}\frac{5}{16.21}\frac{5}{21.26}+......+\frac{5}{61.66}\right)\)
\(=\frac{1}{5}\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{61}+\frac{1}{66}\right)\)
=\(\frac{1}{5}\left(\frac{1}{11}+\frac{1}{66}\right)\)
\(=\frac{1}{5}.\frac{7}{66}\)
\(=\frac{7}{330}\)
Câu b:
\(\frac{21}{8}:\frac{5}{6}+\frac{1}{2}:\frac{5}{6}\)
= \(\frac{63}{20}+\frac{3}{5}\)
= \(\frac{15}{4}\)
\(\left(\frac{21}{8}+\frac{1}{2}\right):\frac{5}{6}\)
\(\frac{25}{8}:\frac{5}{6}\)
\(\frac{25}{8}.\frac{6}{5}\)
\(\frac{30}{8}\)
2/
a) \(\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\)
\(=\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+....+\frac{1}{17}-\frac{1}{21}\right)\)
\(=1-\frac{1}{21}=\frac{20}{21}\)
b) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot..\cdot\frac{2016}{2017}\)
\(=\frac{1}{2017}\)
c) \(A=2000-5-5-5-..-5\)(có 200 số 5)
\(A=2000-\left(5\cdot200\right)\)
\(A=2000-1000\)
\(A=1000\)
\(\frac{1}{11\times16}+\frac{1}{16\times21}+\frac{1}{21\times26}+...+\frac{1}{56\times61}+\frac{1}{61\times66}\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{56}-\frac{1}{61}+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\frac{5}{66}\)
\(=\frac{1}{66}\)
\(\frac{1}{11\times16}+\frac{1}{16\times21}+\frac{1}{21\times26}+...+\frac{1}{56\times61}+\frac{1}{61\times66}\)
\(=\frac{1}{5}\times\left(\frac{5}{11\times16}+\frac{5}{16\times21}+\frac{5}{21\times26}+...+\frac{5}{56\times61}+\frac{5}{61\times66}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{56}-\frac{1}{61}+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\frac{5}{66}=\frac{1}{66}\)