K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

A = 3 + 32 + 33 + ... + 3100

=> 3A = 3(3 + 32 + 33 + ... + 3100)

=> 3A = 32 + 33 + 34 + ... + 3101

=> 3A - A = (32 + 33 + 34 + ... + 3101) - (3 + 32 + 33 + ... + 3100)

=> 2A = 3101 - 3

=> A = (3101 - 3) : 2

8 tháng 1 2018

\(C=x^2-yz\)

\(=\left(-7\right)^2-\left(-3\right).5\)

\(=49+15=64\)

\(D=xy^2-z\)

\(=\left(-7\right).\left(-3\right)^2-5\)

\(=\left(-7\right).9-5\)

\(=-63-5=-68\)

\(E=\left(x^2-y^2\right).z\)

\(=\left[\left(-7\right)^2-\left(-3\right)^2\right].5\)

\(=\left(49-9\right).5\)

\(=40.5=200\)

8 tháng 1 2018

\(A=3+3^2+3^3+...+3^{100}\)

\(3A=3\left(3+3^2+3^3+...+3^{100}\right)\)

\(=3^2+3^3+3^4+...+3^{101}\)

\(3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)

\(2A=3^{101}-3\)

\(A=\dfrac{3^{101}-3}{2}\)

a, 2x+80= 3y

Xét x=0=> 3y=81=> y=4

Xét x>0 ta thấy 2x,80 là số chẵn => 3y là số chẵn (vô lí)

Vậy x=0,y=4

12 tháng 8 2019

a, 2x + 80 = 3y

Xét x khác 0

=> 2x Chẵn

=> 2x + 80 Chẵn

Mà 3y lẻ

=> 2x + 80 = 3y là khẳng định sai

Xét x = 0

=> 20 + 80 = 3y

<=> 1 + 80 = 3y

<=> 3y = 81

<=> y = 4

Vậy x = 0; y = 4

a) \(A=\left(x-1\right)^2+\left|2y+2\right|-3\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\left|2y+2\right|\ge0\forall y\)

Do đó: \(\left(x-1\right)^2+\left|2y+2\right|\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge-3\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left|2y+2\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=\left(x-1\right)^2+\left|2y+2\right|-3\) là -3 khi x=1 và y=-1

b) \(B=\left(x+5\right)^2+\left(2y-6\right)^2+1\)

Ta có: \(\left(x+5\right)^2\ge0\forall x\)

\(\left(2y-6\right)^2\ge0\forall y\)

Do đó: \(\left(x+5\right)^2+\left(2y-6\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x+5\right)^2+\left(2y-6\right)^2+1\ge1\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x+5\right)^2=0\\\left(2y-6\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\2y-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(x+5\right)^2+\left(2y-6\right)^2+1\) là 1 khi x=-5 và y=3

1 tháng 3 2017

Câu 2.

b) Gọi tổng trên là A.

Số số hạng của A là :

(2012-1):1+1=2012(số hạng)

Nhóm 4 số hạng với nhau, ta được số nhóm là:

2012:4=503(nhóm)

Ta có:

A= \(5+5^2+5^3+...+5^{2012}\)

A= ( \(5+5^2+5^3+5^4\)) + ... + ( \(5^{2009}+5^{2010}+5^{2011}+5^{2012}\))

A= 65.12 + ... + 65.12.\(5^{2008}\)

Vậy A chia hết cho 65.

31 tháng 12 2015

a, => x + 1 = 0 => x = -1

y - 1 = 0 => y = 1

z - 2 = 0 => z = 2

=> x,y,z thuộc { -1; 1; 2 }

31 tháng 12 2015

b, => x - 1 = 0 => x=  1

y - 3 = 0 => y = 3