K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2018

\(a,A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2017}}+\dfrac{1}{2^{2018}}\)

\(3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2016}}+\dfrac{1}{3^{2017}}\)

\(3A-A=1-\dfrac{1}{3^{2018}}\)

\(A=\dfrac{\left(1-\dfrac{1}{3^{2018}}\right)}{2}\)

\(b,B=1+5+5^2+5^3+...+5^{100}\)

\(5B=5+5^2+5^3+5^4+...+5^{100}+5^{101}\)

\(5B-B=1-5^{101}\)

\(B=\dfrac{\left(1-5^{101}\right)}{4}\)

29 tháng 5 2017

a) Ta có

S = \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n.\left(n+1\right).\left(n+2\right)}\)

2S = \(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{n.\left(n+1\right).\left(n+2\right)}\)

2S = \(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right).\left(n+2\right)}\)2S = \(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right).\left(n+2\right)}\)

S = \(\dfrac{1}{4}-\dfrac{1}{\left(n+1\right).\left(n+2\right):2}\)

b) A = \(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{99}\)

A = \(2-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

A = \(2-\dfrac{1}{99}\)

A = \(\dfrac{197}{99}\)

c) Ta có

B = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)

B = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

B = \(1-\dfrac{1}{100}\)

B = \(\dfrac{99}{100}\)

d) Ta có

C = \(\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}\)

C = \(1+\left(1+\dfrac{98}{2}\right)+\left(1+\dfrac{97}{3}\right)+...+\left(1+\dfrac{1}{99}\right)\)

C = \(1+50+\dfrac{100}{3}+...+\dfrac{100}{99}\)

C = 51 + 100(\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{99}\))

Đặt D = \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{99}\)

D = \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}\)

D = \(\dfrac{1}{2}-\dfrac{1}{99}\)

D = \(\dfrac{97}{198}\)

=> C = 51 + 100.\(\dfrac{97}{198}\)

C = 51 + \(\dfrac{4850}{99}\)

C = \(\dfrac{9899}{99}\)

Đây là bài làm của mình sai thì nx nha

1 tháng 9 2017

A= \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{4.5.6}+....+\dfrac{1}{37.38.39}\)

A=\(\dfrac{1}{1}-\dfrac{1}{39}\)

A=\(\dfrac{38}{39}\)

còn lại tự làm do mình có việc chút

31 tháng 8 2017

Chưa học

30 tháng 3 2018

b) \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}=\dfrac{5}{8}\)

Vì không có thời gian nên mình chỉ làm câu khó nhất thôi, tick mình nhéhaha

30 tháng 3 2018

cảm ơn bạn

12 tháng 4 2017

Bài 1: Tính tổng 100 số hạng đầu tiên của các dãy sau:

a) \(\left\{{}\begin{matrix}\dfrac{1}{2}=\dfrac{1}{1.2}\\\dfrac{1}{6}=\dfrac{1}{2.3}\\\dfrac{1}{12}=\dfrac{1}{3.4}\\...\end{matrix}\right.\)

Vậy số thứ 100 của dãy là: \(\dfrac{1}{100.101}=\dfrac{1}{10100}\)

Tổng: \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{100.101}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}\)

\(=\dfrac{100}{101}\)

b) \(\left\{{}\begin{matrix}\dfrac{1}{6}=\dfrac{1}{\left(5.0+1\right)\left(5.1+1\right)}\\\dfrac{1}{66}=\dfrac{1}{\left(5.1+1\right)\left(5.2+1\right)}\\\dfrac{1}{176}=\dfrac{1}{\left(5.2+1\right)\left(5.3+1\right)}\\...\end{matrix}\right.\)

Vậy số thứ 100 của dãy là: \(\dfrac{1}{\left(5.99+1\right)\left(5.100+1\right)}=\dfrac{1}{248496}\)

Tổng: \(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{496.501}\)

\(=\dfrac{1}{5}\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+...+\dfrac{5}{496.501}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{496}-\dfrac{1}{501}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{501}\right)\)

\(=\dfrac{1}{5}.\dfrac{500}{501}\)

\(=\dfrac{100}{501}\)

12 tháng 4 2017

Bài 2: Tính:

a) \(A=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{97.3}+\dfrac{1}{99.1}}\)

\(A=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(\dfrac{1}{3}+\dfrac{1}{97}\right)+...+\left(\dfrac{1}{49}+\dfrac{1}{51}\right)}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)

\(A=\dfrac{\dfrac{100}{1.99}+\dfrac{100}{3.97}+\dfrac{100}{5.95}+...+\dfrac{100}{49.51}}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)

\(A=\dfrac{100\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}{2\left(\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.95}+...+\dfrac{1}{49.51}\right)}\)

\(\Rightarrow A=\dfrac{100}{2}=50\)

1: =>7/3x=3+1/3-8-2/3=-5-1/3=-16/3

=>x=-16/3:7/3=-7/16

2: =>1/3|x-2|=4/5+3/7=28/35+15/35=43/35

=>|x-2|=129/35

=>x-2=129/35 hoặc x-2=-129/35

=>x=199/35 hoặc x=-59/35

7 tháng 5 2017

lầy dạ??

\(.2.\)

\(a.\)

\(2x+\dfrac{1}{2}=-\dfrac{5}{3}\)

\(\Rightarrow2x=-\dfrac{5}{3}-\dfrac{1}{2}=-\dfrac{13}{6}\)

\(\Rightarrow x=-\dfrac{13}{6}:2=-\dfrac{13}{12}\)

Vậy : \(x=-\dfrac{13}{12}\)

\(b.\)

\(\dfrac{1}{7}-\dfrac{3}{5}x=\dfrac{3}{5}\)

\(\Rightarrow\dfrac{3}{5}x=\dfrac{1}{7}-\dfrac{3}{5}=-\dfrac{16}{35}\)

\(\Rightarrow x=-\dfrac{16}{35}:\dfrac{3}{5}=-\dfrac{16}{21}\)

Vậy : \(x=-\dfrac{16}{21}\)

\(c.\)

\(\dfrac{3}{4}x+\dfrac{1}{2}=-\dfrac{3}{5}\)

\(\Rightarrow\dfrac{3}{4}x=-\dfrac{3}{5}-\dfrac{1}{2}=-\dfrac{11}{10}\)

\(\Rightarrow x=-\dfrac{11}{10}:\dfrac{3}{4}=-\dfrac{22}{15}\)

Vậy : \(x=-\dfrac{22}{15}\)

\(d.\)

\(-\dfrac{2}{15}-x=-\dfrac{3}{10}\)

\(\Rightarrow x=-\dfrac{2}{15}-\left(-\dfrac{3}{10}\right)=\dfrac{1}{6}\)

Vậy : \(x=\dfrac{1}{6}\)

9 tháng 3 2017

còn bài 1

14 tháng 4 2017

Bài 1: Tìm x biết:

a) \(\dfrac{6}{5}-2\left|1-3x\right|=1\dfrac{2}{3}\)

\(2\left|1-3x\right|=\dfrac{6}{5}-1\dfrac{2}{3}\)

\(2\left|1-3x\right|=\dfrac{-7}{15}\)

\(\left|1-3x\right|=\dfrac{-7}{15}:2\)

\(\left|1-3x\right|=\dfrac{-7}{30}\)

\(\left|1-3x\right|\in N\) nhưng \(\dfrac{-7}{30}\notin N\)

\(\Rightarrow x=\varnothing\)

b) \(\left(2,8x+50\right):\dfrac{-3}{2}=51\)

\(\left(2,8x+50\right)=51.\dfrac{-3}{2}\)

\(2,8x+50=\dfrac{-153}{2}\)

\(2,8x=\dfrac{-153}{2}-50\)

\(2,8x=\dfrac{-253}{2}\)

\(x=\dfrac{-253}{2}:2,8\)

\(x=\dfrac{-1265}{28}\)

c) \(\dfrac{x-2}{-2}=\dfrac{x+4}{3}\)

\(\Rightarrow\left(x-2\right).3=-2.\left(x+4\right)\)

\(x.3-2.3=\left(-2\right).x+\left(-2\right).4\)

\(3x-6=\left(-2\right)x+\left(-8\right)\)

\(3x-\left(-2\right)x=6+\left(-8\right)\)

\(5x=-2\)

\(x=\left(-2\right):5\)

\(x=\dfrac{-2}{5}\)

d) \(4\left(3-2x\right)-5\left(x-1\right)=12\)

\(4.3-4.2x-5x+5.1=12\)

\(12-8x-5x+5=12\)

\(12+\left(-8\right)x+\left(-5\right)x+5=12\)

\(12+\left(-13\right)x+5=12\)

\(\left(-13\right)x=12-12-5\)

\(\left(-13\right)x=-5\)

\(x=\left(-5\right):\left(-13\right)\)

\(x=\dfrac{5}{13}\)

14 tháng 4 2017

Bài 2: Chứng minh:

\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)

\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\) (đpcm)