Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+\(\frac{1+2}{2}\)+\(\frac{1+2+3}{3}\)+...+\(\frac{1+2+3+...+16}{16}\)
A=\(\frac{2}{2}\)+\(\frac{3}{2}\)+\(\frac{4}{2}\)+...+\(\frac{17}{2}\)
A=\(\frac{2+3+4+...+17}{2}\)
A=76(đề thi HSG huyện tui có tui làm zậy mà cũng có điểm tuyệt đối)
\(A=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+....+\frac{1}{16}.\left(1+2+3+....+16\right)\)
\(A=1+\frac{1}{2}\cdot\frac{2.3}{2}+\frac{1}{3}\cdot\frac{3.4}{2}+\frac{1}{4}\cdot\frac{4.5}{2}+.....+\frac{1}{16}\cdot\frac{16.17}{2}\)
\(A=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{17}{2}\)
\(A=\frac{\left(2+3+4+.....+17\right)}{2}=\frac{\left(2+17\right).16}{2}=\frac{152}{2}=76\)
Bài 1:
1) \(\frac{11}{3}\): 3\(\frac{1}{3}\)- 3
= \(\frac{11}{3}\): \(\frac{10}{3}\)- 3
= \(\frac{11}{3}\). \(\frac{3}{10}\)- 3
= \(\frac{11}{10}\)- 3
= \(\frac{-19}{10}\)
2) \(\frac{5}{6}\): \(\frac{3}{52}\) - \(\frac{5}{6}\). 47\(\frac{1}{3}\)
= \(\frac{5}{6}\) . \(\frac{52}{3}\)- \(\frac{5}{6}\). 47\(\frac{1}{3}\)
= \(\frac{5}{6}\).(\(\frac{52}{3}\)- 47\(\frac{1}{3}\))
= \(\frac{5}{6}\).( -30)
= -25
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+....+\frac{1}{16}\left(1+2+3+....+16\right)\)
\(A=1+\frac{1}{2}\cdot\frac{2.3}{2}+\frac{1}{3}\cdot\frac{3.4}{2}+....+\frac{1}{16}\cdot\frac{16.17}{2}\)
\(A=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+.....+\frac{17}{2}\)
\(A=\frac{\left(2+3+4+....+17\right)}{2}=\frac{\left(2+17\right).\left(17-2+1\right):2}{2}=\frac{152}{2}=76\)
Ta có: \(A = 1+{1+2\over 2} + {1+2+3\over 3} +...+{1+2+...+ 16\over 16}\)
Xét: \(S_n = 1+2+3+...+n =\frac{n(n+1)}{n} (n \in N^*)\)
=> \({S_n\over n} = {(n+1)\over 2}\)
Thay vào biểu thức A ta có:
\(A=1 + {3\over 2} + {4\over 2} + ... + {17\over 2}\)
\(A={(2+3+4+...+17)\over 2}\)
\(A={(17+2)[(17-2+1):2]\over 2} = {152\over2}=76\)
\(A=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{16}.\left(1+2+...+16\right)\)
\(=1+\frac{1}{2}.2.3:2+\frac{1}{3}.3.4:2+...+\frac{1}{16}.16.17:2=1+\frac{3}{2}+\frac{4}{2}+...+\frac{17}{2}=\frac{2+3+4+...+17}{2}=\frac{152}{2}=76\)
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)
\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)