K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2020

Sai bạn nhé! Cấp 3 có học tập hợp số phức (hay số ảo) nghĩa là trong đó có số i sao cho i2=-1. Nên kq là :

= -3i + (-2i)

=-5i

20 tháng 6 2021

câu này dễ như toán lớp 3 nhỉ

20 tháng 6 2021

số 126

23 tháng 4 2017

a)

\(A=2^{2-3\sqrt{5}}.8^{\sqrt{5}}=2^{2-3\sqrt{5}}.2^{3\sqrt{5}}=2^{\left(2-3\sqrt{5}\right)+3\sqrt{5}}=2^2=4\)

\(A=4\)

d)

\(D=\left(4^{2\sqrt{3}}-4^{\sqrt{3}-1}\right).2^{-2\sqrt{3}}=2^{4\sqrt{3}-2\sqrt{3}}-2^{2\sqrt{3}-2-2\sqrt{3}}\)

\(D=2^{2\sqrt{3}}-\dfrac{1}{4}\)

GV
26 tháng 4 2017

b) \(=\dfrac{3^{1+2\sqrt[3]{2}}}{3^{2\sqrt[3]{2}}}=3^{1+2\sqrt[3]{2}-2\sqrt[3]{2}}=3^1=3\)

c) \(=\dfrac{\left(2.5\right)^{2+\sqrt{7}}}{2^{2+\sqrt{7}}5^{1+\sqrt{7}}}=\dfrac{2^{2+\sqrt{7}}5^{2+\sqrt{7}}}{2^{2+\sqrt{7}}5^{1+\sqrt{7}}}=5\)

d) \(=\left(2^{2.\left(2\sqrt{3}\right)}-2^{2\left(\sqrt{3}-1\right)}\right).2^{-2\sqrt{3}}\)

\(=2^{4\sqrt{3}-2\sqrt{3}}-2^{2\sqrt{3}-2-2\sqrt{3}}\)

\(=2^{2\sqrt{3}}-2^{-2}\)

\(=2^{2\sqrt{3}}-\dfrac{1}{2^2}\)

\(=\dfrac{2^{2+2\sqrt{3}}-1}{4}\)

22 tháng 5 2016

mình cũg đâu bao giờ đc đâu đành chịu thôi 

22 tháng 5 2016

mik cx z suốt ngày bị bố mẹ so sánh vs con nhà người ta

25 tháng 8 2018

a) ta có : \(\left(1+i\sqrt{2}\right).\left(1-i\sqrt{2}\right)=1-\left(i\sqrt{2}\right)^2=1+2=3\)

\(\left(1+i\sqrt{2}\right)+\left(1-i\sqrt{2}\right)=2\)

\(\Rightarrow1+i\sqrt{2}\)\(1-i\sqrt{2}\) là nghiệm của hệ \(x^2-2x+3=0\)

b) ta có : \(\left(\sqrt{3}+2i\right).\left(\sqrt{3}-2i\right)=3-\left(2i\right)^2=3+4=7\)

\(\left(\sqrt{3}+2i\right)+\left(\sqrt{3}-2i\right)=2\sqrt{3}\)

\(\Rightarrow\sqrt{3}+2i\)\(\sqrt{3}-2i\) là nghiệm của hệ \(x^2-2\sqrt{3}x+7=0\)

c) ta có : \(\left(-\sqrt{3}+i\sqrt{2}\right).\left(-\sqrt{3}-i\sqrt{2}\right)=3-\left(i\sqrt{2}\right)^2=3+2=5\)

\(\left(-\sqrt{3}+i\sqrt{2}\right)+\left(-\sqrt{3}-i\sqrt{2}\right)=-2\sqrt{3}\)

\(\Rightarrow-\sqrt{3}+i\sqrt{2}\)\(-\sqrt{3}-i\sqrt{2}\) là nghiệm của hệ \(x^2+2\sqrt{3}x+5=0\)

8 tháng 4 2019

giải pt h.độ giao điểm

có nghiệm x = -1 , x=0, x=2

vẽ hình ra , khoảng giới hạn nằm trong khoangt từ -1 ; 0

S = \(\int_{-1}^0\frac{2x}{x-1}-x^2dx\)= (máy tính STO A)

giải hpt 2 ẩn

a + bln2 = A

a + b = (thay đáp án ) giải ra đc đáp án A cho số hữu tỉ, vậy A đúng

14 tháng 12 2017
B
4 tháng 5 2016

Đặt \(\sqrt[3]{2}=a\Leftrightarrow a^3=2\). Ta chứng minh \(\sqrt[3]{a-1}=\frac{a^2-a+1}{\sqrt[3]{9}}\)

Lập phương hai vế ta có :

\(a-1=\frac{\left(a^2-a+1\right)^3}{9}\Leftrightarrow9\left(a-1\right)\left(a+1\right)^3=\left(a+1\right)^3\left(a^2-a+1\right)^3\)

                             \(\Leftrightarrow9\left(a-1\right)\left(a^3+3a^2+3a+1\right)=\left(a^3+1\right)^3\)

                             \(\Leftrightarrow9\left(a-1\right)\left(3+3a^2+3a\right)=27\)

                             \(\Leftrightarrow3\left(a-1\right)\left(a^2+a+1\right)=3\)

                             \(\Leftrightarrow a^3-1=1\)

                             \(\Leftrightarrow a^3=2\)

Đẳng thức cuối đúng nên ta có điều phải chứng minh

bài 3:a)O=AC x BD (x là giao nhá)=> SO \(\perp\) (ABCD)=> OC=\(a\sqrt{2}\)\(\Rightarrow\widehat{SCO}=60^o\Rightarrow SO=OC.tan60^o=\frac{a\sqrt{6}}{2}\Rightarrow V_{k.chóp}=\frac{1}{3}SO.S_{ABCD}=\frac{1}{3}.a\frac{\sqrt{6}}{2}.a^2=\frac{a^3\sqrt{6}}{6}\)b) \(\Delta SAC\)có \(\widehat{SCA=60^o}\)=> \(\Delta SAC\)đềuAE\(\perp\)SC=> AE=\(\frac{a\sqrt{6}}{2}\)AExSO=G => G là trọng tâm \(\Delta SAC\)=> \(\frac{SG}{SO}\)=\(\frac{2}{3}\)\(\hept{\begin{cases}BD\perp SO\\BD\perp...
Đọc tiếp

bài 3:a)O=AC x BD (x là giao nhá)=> SO \(\perp\) (ABCD)
=> OC=\(a\sqrt{2}\)\(\Rightarrow\widehat{SCO}=60^o\Rightarrow SO=OC.tan60^o=\frac{a\sqrt{6}}{2}\Rightarrow V_{k.chóp}=\frac{1}{3}SO.S_{ABCD}=\frac{1}{3}.a\frac{\sqrt{6}}{2}.a^2=\frac{a^3\sqrt{6}}{6}\)

b) \(\Delta SAC\)có \(\widehat{SCA=60^o}\)=> \(\Delta SAC\)đều

AE\(\perp\)SC=> AE=\(\frac{a\sqrt{6}}{2}\)

AExSO=G => G là trọng tâm \(\Delta SAC\)=> \(\frac{SG}{SO}\)=\(\frac{2}{3}\)

\(\hept{\begin{cases}BD\perp SO\\BD\perp AC\end{cases}\Rightarrow BD\perp\left(SAC\right)\Rightarrow BD\perp SC}\)

(AMEN)\(\perp\)SC => MN \(\perp\)SC => MN //BD => \(\frac{MN}{BD}=\frac{SG}{SO}=\frac{2}{3}\Rightarrow MN=\frac{2}{3}BD=\frac{2a\sqrt{2}}{3}\)

\(S_{AMEN}=\frac{1}{2}MN.AE=\frac{1}{2}.\frac{2a\sqrt{2}}{3}.\frac{a\sqrt{6}}{2}=\frac{a^2\sqrt{3}}{3}\)

\(\frac{V_{SAMEN}}{V_{SABCD}}=\frac{SM}{SB}.\frac{SE}{SC}.\frac{SN}{SD}=\frac{2}{3}.\frac{1}{2}.\frac{2}{3}=\frac{2}{9}\)

\(\Rightarrow V_{SAMEN}=\frac{2}{9}.\frac{a^3\sqrt{6}}{6}=\frac{a^3\sqrt{6}}{27}\)

phần trả lời bên dưới là câu 4

1
5 tháng 8 2019

I*AB=> SI\(\perp\)AB

SI=\(SI=\frac{AB\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\)

\(V_{k.chop}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.a^2=\frac{a^3\sqrt{3}}{4}\)

b) Kẻ IK//DM(K\(\in\)AD)

Kẻ KH\(\perp\)DM(H\(\in\)DM)

=> d(I,DM)=d(K,DM0=KH

\(\Delta IAK~\Delta DCM\Rightarrow AK=\frac{1}{2}CM=\frac{a}{6}\)=> KD=5a/6

\(cos\widehat{ADM}=cos\widehat{DMC}=\frac{CM}{DM}=\frac{\frac{a}{3}}{\frac{a\sqrt{10}}{3}}=\frac{1}{\sqrt{10}}\)

=> KH=KDsin\(\widehat{ADM}\)=\(\sqrt{1-\cos\widehat{ADM}^2}=\frac{5a}{6}.\frac{3}{\sqrt{10}}=\frac{a\sqrt{10}}{4}\)

d(S,DM)=\(\sqrt{SI^2+d\left(I,DM\right)^2}=\frac{a\sqrt{22}}{4}\)