Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng HĐT $(a-b)^3=a^3-b^3-3ab(a-b)$ ta có:
\(x^3=2+\sqrt{3}-(2-\sqrt{3})-3\sqrt[3]{(2+\sqrt{3})(2-\sqrt{3})}.x\)
\(\Leftrightarrow x^3=2\sqrt{3}-3x\)
\(y^3=\sqrt{5}+2-(\sqrt{5}-2)-3\sqrt[3]{(\sqrt{5}-2)(\sqrt{5}+2)}.y\)
\(\Leftrightarrow y^3=4-3y\)
Khi đó:
\(A=(x-y)^3+3(x-y)(xy+1)=x^3-y^3-3xy(x-y)+3(x-y)xy+3(x-y)\)
\(=x^3-y^3+3x-3y=2\sqrt{3}-3x-(4-3y)+3x-3y\)
\(=2\sqrt{3}-4\)
Lời giải:
Áp dụng HĐT $(a-b)^3=a^3-b^3-3ab(a-b)$ ta có:
\(x^3=2+\sqrt{3}-(2-\sqrt{3})-3\sqrt[3]{(2+\sqrt{3})(2-\sqrt{3})}.x\)
\(\Leftrightarrow x^3=2\sqrt{3}-3x\)
\(y^3=\sqrt{5}+2-(\sqrt{5}-2)-3\sqrt[3]{(\sqrt{5}-2)(\sqrt{5}+2)}.y\)
\(\Leftrightarrow y^3=4-3y\)
Khi đó:
\(A=(x-y)^3+3(x-y)(xy+1)=x^3-y^3-3xy(x-y)+3(x-y)xy+3(x-y)\)
\(=x^3-y^3+3x-3y=2\sqrt{3}-3x-(4-3y)+3x-3y\)
\(=2\sqrt{3}-4\)
Ta có: \(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\Leftrightarrow x^3=9+4\sqrt{5}+9-4\sqrt{5}+\sqrt[3]{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}x\Leftrightarrow x^3=18+3x\) làm tương tự ⇒ y3 = 9+ 3x
Thay x=..., y=... vào A ta có:
\(A=18+3x+9+3y-3x-3y+2020\)
A= 2047
a) Ta có:
\(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}=-\sqrt{n}+\sqrt{n+1}\)
\(\Rightarrow A=...=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{48}+\sqrt{49}=-1+7=6\)
\(\dfrac{\sqrt{14-6\sqrt{5}}}{\sqrt{5}-3}\)
\(=\dfrac{\sqrt{\left(3-\sqrt{5}\right)^2}}{\sqrt{5}-3}\)
\(=\dfrac{3-\sqrt{5}}{\sqrt{5}-3}\)
= - 1
\(\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{6+2\sqrt{5}}}{2}\)
\(=\dfrac{\sqrt{\left(\sqrt{5}+1\right)^2}}{2}\)
\(=\dfrac{\sqrt{5}+1}{2}\)
\(\dfrac{2+\sqrt{2}}{\sqrt{1,5+\sqrt{2}}}\)
\(=\dfrac{2\sqrt{2}+2}{\sqrt{3+2\sqrt{2}}}\)
\(=\dfrac{2\left(\sqrt{2}+1\right)}{\sqrt{\left(\sqrt{2}+1\right)^2}}\)
\(=\dfrac{2\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
= 2
\(\dfrac{\sqrt{20}}{\sqrt{5}}+\dfrac{\sqrt{117}}{\sqrt{13}}+\dfrac{\sqrt{272}}{\sqrt{17}}+\dfrac{\sqrt{105}}{\sqrt{2\dfrac{1}{7}}}\)
\(=4+9+16+49\)
= 78
\(\dfrac{x\sqrt{x}-y\sqrt{y}}{x+\sqrt{xy}+y}\)
\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x+\sqrt{xy}+y}\)
\(=\sqrt{x}-\sqrt{y}\)
\(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(=\dfrac{\left(2+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)+\left(2-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)
\(\left[-\text{tử}-\right]=\sqrt{2}\left(2+\sqrt{3}\right)-\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)^2}+\sqrt{2}\left(2-\sqrt{3}\right)+\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)^2}\)
\(=4\sqrt{2}-\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(\left[-\text{mẫu}-\right]=2-\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}-\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)
\(=2-\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{4-3}\)
\(=2-\left(\sqrt{3}-1\right)+\left(\sqrt{3}+1\right)-1\)
= 3
Ta có:
\(\dfrac{4\sqrt{2}-\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}{3}\)
\(=\dfrac{8-\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{3\sqrt{2}}\)
\(=\dfrac{8-\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}}{3\sqrt{2}}\)
\(=\dfrac{8-\left(\sqrt{3}+1\right)+\left(\sqrt{3}-1\right)}{3\sqrt{2}}=\dfrac{6}{3\sqrt{2}}=\sqrt{2}\)
\(\sqrt{\dfrac{2+a-2\sqrt{2a}}{a+3-2\sqrt{3a}}}\)
\(=\sqrt{\dfrac{\left(\sqrt{a}-\sqrt{2}\right)^2}{\left(\sqrt{a}-\sqrt{3}\right)^2}}\)
\(=\dfrac{\left|\sqrt{a}-\sqrt{2}\right|}{\left|\sqrt{a}-\sqrt{3}\right|}\)
2b
\(\left\{{}\begin{matrix}\sqrt{3}x-2\sqrt{2}y=7\\\sqrt{2}x+3\sqrt{3}y=-2\sqrt{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{6}x-4y=7\sqrt{2}\\\sqrt{6}x+9y=-6\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-13y=13\sqrt{2}\\\sqrt{3}x-2\sqrt{2}y=7\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=-\sqrt{2}\\x=\sqrt{3}\end{matrix}\right.\)
2 a)
\(\left\{{}\begin{matrix}2x-y=3\\3x+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-7=3\end{matrix}\right.\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Lời giải:
Áp dụng HĐT $(a-b)^3=a^3-3a^2b+3ab^2-b^3=a^3-3ab(a-b)-b^3$
\(x^3=2+\sqrt{3}-3\sqrt[3]{(2+\sqrt{3})(2-\sqrt{3})}x-(2-\sqrt{3})\)
\(\Leftrightarrow x^3=2\sqrt{3}-3x\)
\(\Leftrightarrow x^3+3x=2\sqrt{3}\)
\(y^3=\sqrt{5}+2-3\sqrt[3]{(\sqrt{5}+2)(\sqrt{5}-2)}y-(\sqrt{5}-2)\)
\(\Leftrightarrow y^3=4-3y\Leftrightarrow y^3+3y=4\)
Do đó:
\(A=(x-y)^3+3(x-y)(xy+1)=x^3-3xy(x-y)-y^3+3[xy(x-y)+(x-y)]\)
\(=x^3-y^3+3(x-y)=(x^3+3x)-(y^3+3y)=2\sqrt{3}-4\)