Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1/2)^m = 1/32
mà 1/32 = (1/2)^5 nên m = 5
343/125= (7/5)^n
mà 343/125 = (7/5)^3 nên n=3
45^10*5^20/75^15
=5^10*9^10*5^20/(5^2)^15
=5^10*5^20*9^10/5^30
=9^10
(0.8)^5/(0.4)^6
=(0.4)^5*2^5/(0.4)^6
=2^5/(0.4)
=32/(0.4)
=80
2^15*9^4/6^6*8^3
=2^15*(3^2)^4/2^6*3^6*(2^3)^3
=2^15*3^8/2^6*3^6*2^9
=3^2
=9
3.
a) \(\left(x-1\right)^3=125\)
=> \(\left(x-1\right)^3=5^3\)
=> \(x-1=5\)
=> \(x=5+1\)
=> \(x=6\)
Vậy \(x=6.\)
b) \(2^{x+2}-2^x=96\)
=> \(2^x.\left(2^2-1\right)=96\)
=> \(2^x.3=96\)
=> \(2^x=96:3\)
=> \(2^x=32\)
=> \(2^x=2^5\)
=> \(x=5\)
Vậy \(x=5.\)
c) \(\left(2x+1\right)^3=343\)
=> \(\left(2x+1\right)^3=7^3\)
=> \(2x+1=7\)
=> \(2x=7-1\)
=> \(2x=6\)
=> \(x=6:2\)
=> \(x=3\)
Vậy \(x=3.\)
Chúc bạn học tốt!
a) Ta có: \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
Mà \(\frac{1}{32}=\left(\frac{1}{2}\right)^5\)
\(\Rightarrow\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\Rightarrow m=5\)
b)Ta có: \(\frac{343}{125}=\left(\frac{7}{5}\right)^3\)
Mà \(\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\Rightarrow n=3\)
\(a)\) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
\(\Leftrightarrow\)\(\left(\frac{1}{2}\right)^m=\frac{1^5}{2^5}\)
\(\Leftrightarrow\)\(\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)
\(\Leftrightarrow\)\(m=5\)
Vậy \(m=5\)
\(b)\) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(\Leftrightarrow\)\(\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)
\(\Leftrightarrow\)\(\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
\(\Leftrightarrow\)\(n=3\)
Vậy \(n=3\)
Chúc bạn học tốt ~
\(A=\frac{1}{2}-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^4+...-\left(\frac{1}{2}\right)^{20}\)
\(2A=1-\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3+...-\left(\frac{1}{2}\right)^{19}\)
\(2A-A=\)\(\left(1-\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3+...-\left(\frac{1}{2}\right)^{19}\right)-\)\(\left(\frac{1}{2}-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^4+...-\left(\frac{1}{2}\right)^{20}\right)\)
\(A=1-\left(\frac{1}{2}\right)^{20}\)
Bài 6 :
a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)
c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)
d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)
Bài 7 :
a) \(3^x+3^{x+2}=9^{17}+27^{12}\)
\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)
\(\Rightarrow10.3^x=3^{34}+3^{36}\)
\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)
\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)
b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)
\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)
\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)
c) Bài C bạn xem lại đề
d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)
\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)
\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)
\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)
\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)
\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)
a,[(-1/3)2]0
=(-1/3)2
=1/6
b,(-5/7)n
________
(-5/7)n+1
=(-5/7)1