K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2015

a, tai x = 5 va y =2

x^2y +5xy^2 = 5^2 . 2 + 5 . 5 . 2^2 = 150

8 tháng 12 2015

mới học lớp 5 k biết bài lớp 6?

 

14 tháng 7 2015

x=99

=>x+1=100

thay x+1=100 và 99=x vào B ta được:

x99-(x+1).x98+(x+1).x97-(x+1).x96+...+(x+1).x-1

=x99-x99-x98+x98+x97-x97-x96+...+x2+x-1

=x-1

=99-1

=98

Vậy B=98

14 tháng 7 2015

trời                

14 tháng 7 2015

x=99

=>x+1=100

thay x+1=100 và 99=x vào B ta được:

x99-(x+1).x98+(x+1).x97-(x+1).x96+...+(x+1).x-1

=x99-x99-x98+x98+x97-x97-x96+...+x2+x-1

=x+1

=100

Vậy B=100

14 tháng 7 2015

SỬA

x=99

=>x+1=100

thay x+1=100 và 99=x vào B ta được:

x99-(x+1).x98+(x+1).x97-(x+1).x96+...+(x+1).x-1

=x99-x99-x98+x98+x97-x97-x96+...+x2+x-1

=x-1

=99-1

=98

Vậy B=98

31 tháng 12 2015

cái đề chắc sai rồi bạn ơi

 

11 tháng 8 2016

A=\(x^{99}-\left(99+1\right)x^{98}+\left(99+1\right)x^{97}-...-1\)

=\(x^{99}-99x^{98}-x^{98}+99x^{97}+...+99^2+99-1\)mà x =99

nên \(A=99^{99}-99^{99}-99^{98}+99^{98}+99^{97}-99^{97}-...+99-1\)

\(A=99-1=98\)

26 tháng 6 2017

a) \(\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{99}-\left(\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

đặt \(A=\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)

\(A=1-\frac{1}{99}\)

\(A=\frac{98}{99}\)

thay A vào, ta được :

\(\frac{1}{99}-\frac{98}{99}=\frac{-97}{99}\)

b) \(\frac{2}{100.99}-\frac{2}{99.98}-...-\frac{2}{3.2}-\frac{2}{2.1}\)

\(=\frac{2}{100.99}-\left(\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\right)\)

đặt \(A=\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\)

\(A=\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{98.99}\)

\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\right)\)

\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)

\(A=2.\left(1-\frac{1}{99}\right)\)

\(A=2.\frac{98}{99}\)

\(A=\frac{196}{99}\)

Thay A vào, ta được :

\(\frac{2}{100.99}-\frac{196}{99}=\frac{-19598}{9900}\)

31 tháng 5 2019

Bài 1:

\(M\left(1\right)=a+b+6\)

Mà \(M\left(1\right)=0\)

\(\Rightarrow a+b+6=0\)

\(\Rightarrow a+b=-6\)( * )

\(\Rightarrow2a+2b=-12\) (1)

Ta có: \(M\left(-2\right)=4a-2b+6\)

Mà \(M\left(-2\right)=0\)

\(\Rightarrow4a-2b=-6\)(2)

Lấy (1) cộng (2) ta được:

\(6a=-18\)

\(a=-3\)

Thay a=-3 vào (* ) ta được:

\(b=-3\)

Vậy a=-3 ; b=-3

31 tháng 5 2019

Bài 2:

a) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

\(\Leftrightarrow\frac{1}{8}-\frac{y}{4}=\frac{5}{x}\)

\(\Leftrightarrow\frac{1}{8}-\frac{2y}{8}=\frac{5}{x}\)

\(\Leftrightarrow\frac{1-2y}{8}=\frac{5}{x}\)

\(\Leftrightarrow\left(1-2y\right).x=5.8\)

\(\Leftrightarrow\left(1-2y\right).x=40\)

Vì \(x,y\in Z\Rightarrow1-2y\in Z\)

mà \(40=1.40=40.1=5.8=8.5=\left(-1\right).\left(-40\right)=\left(-40\right).\left(-1\right)=\left(-5\right).\left(-8\right)=\left(-8\right).\left(-5\right)\)

Thử từng TH

25 tháng 6 2016

Ta có: \(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow C=\frac{1}{100}-\left(\frac{1}{99}-\frac{1}{100}\right)-\left(\frac{1}{98}-\frac{1}{99}\right)-...-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(1-\frac{1}{2}\right)\)

\(\Rightarrow C=\frac{1}{100}-\frac{1}{99}+\frac{1}{100}-\frac{1}{98}+\frac{1}{99}-...-\frac{1}{2}+\frac{1}{3}-1+\frac{1}{2}\)

\(\Rightarrow C=\frac{1}{100}+\frac{1}{100}-1\)

\(\Rightarrow C=\frac{2}{100}-\frac{100}{100}\)

\(\Rightarrow C=-\frac{88}{100}=-\frac{22}{25}\)

Vậy \(C=-\frac{22}{25}\)

Chuk bạn hok tốt! vui

7 tháng 5 2019

bạn oi

2/100 -100/100=98/100 chứ

sao bằng 88 được bạn ơi

12 tháng 7 2016

\(\frac{1}{100.99}-\frac{1}{99.98}-...\frac{1}{2.1}\)

\(=\frac{1}{100.99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...\frac{1}{2.1}\right)\)

\(=\frac{1}{100.99}-\left(\frac{1}{99}-1\right)\)

\(=\frac{1}{9900}-\frac{-98}{99}=\frac{1}{9900}+\frac{98}{99}=\frac{1}{9900}+\frac{9800}{9900}=\frac{9800}{9900}\)

30 tháng 7 2015

\(\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{2.1}\)

\(\frac{1}{100-99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+..+\frac{1}{2.1}\right)\)

\(\frac{1}{100-99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\right)\)

\(\frac{1}{100.99}-\left(\frac{1}{1}-\frac{1}{2}+...+\frac{1}{98}-\frac{1}{99}\right)\)

\(\frac{1}{100.99}-\left(\frac{1}{1}-\frac{1}{99}\right)\)

\(\frac{1}{99}-\frac{1}{100}-\frac{98}{99}\)

\(-\frac{97}{99}-\frac{1}{100}\)

\(-\frac{9799}{9900}\)

22 tháng 8 2018

\(\frac{1}{100\cdot99}-\frac{1}{99\cdot98}-...-\frac{1}{2\cdot1}\)

\(=\frac{1}{100\cdot99}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{98\cdot99}\right)\)

\(=\frac{1}{99\cdot100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)

\(=\frac{1}{9900}-\frac{98}{99}\)

\(=\frac{-9799}{9900}\)

Bài 2: https://oml.vn/hoi-dap/detail/6465458369.html

Bài 3: https://hoidap247.com/cau-hoi/20162 

Bài 1: https://hoidap247.com/cau-hoi/1009171