Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(sin210+sin280)+(sin220+sin70)+(sin230+sin260)+(sin240+sin250)
Lại có: sin80=cos10; sin70=cos20; sin60=cos30; sin50=cos40
=> sin280=cos210; sin270=cos220; sin260=cos230; sin250=cos240
=>A=(sin210+cos210)+(sin220+cos220)+(sin230+cos230)+(sin240+cos240)
=>A=1+1+1+1=4
a: \(=\left(\cos^215^0+\cos^275^0\right)+\left(\cos^225^0+\cos^265^0\right)+\left(\cos^235^0+\cos^255^0\right)+\cos^245^0\)
=1+1+1+1/2
=3,5
b: \(=\left(\sin^210^0+\sin^280^0\right)-\left(\sin^220^0+\sin^270^0\right)+\left(\sin^230^0\right)-\left(\sin^240^0+\sin^250^0\right)\)
=1-1-1+1/4
=-1+1/4=-3/4
c: \(=\left(\sin15^0-\cos75^0\right)+\left(\sin75^0-\cos15^0\right)+\sin30^0\)
=1/2
Ta có:
\(C=sin^22^0+sin^24^0+...+sin^288^0\)
\(C=\left(sin^22^0+sin^288^0\right)+\left(sin^24^0+sin^286^0\right)+...+\left(sin^244^0+sin^246^0\right)\)
\(C=\left(sin^22^0+cos^22^0\right)+\left(sin^24^0+cos^24^0\right)+...+\left(sin^244^0+cos^244^0\right)\)
\(C=1+1+...+1\) \(C=22\)
a, cos220o + cos240o + cos250o + cos270o
= (cos220o + cos270o) + (cos240o + cos250o)
= (cos220o + sin220o) + (cos240o + sin240o)
= 1 + 1 = 2
Mình nghĩ chắc sin285o là sin255o
b, sin225o + sin245o + sin265o + sin255o
= (sin225o + sin265o) + (sin245o + sin255o)
= (sin225o + cos225o) + (sin245o + cos245o)
= 1 + 1 = 2
Chúc bn học tốt!
A=(sin220°+sin270°)+(sin230°+sin260°)
+(sin240°+sin250°)-tan245°
=(sin220°+cos220°)+(sin230°+cos230°)+(sin240°+cos240°)-1
=1+1+1-1=2
A = ( sin2 10o + sin2 80o) + (sin2 20o + sin2 70o) + ...+ (sin240o + sin2 50o)
A = ( sin2 10o + cos2 10o) + (sin2 20o + cos2 20o) + ...+ (sin240o + cos2 40o)
A = 1 + 1 + 1 + 1 = 4 ( Vì ( sin2 a + cos2 a = 1 với mọi a)
Bài làm
A = ( sin2 10o + sin2 80o) + (sin2 20o + sin2 70o) + ...+ (sin240o + sin2 50o)
A = ( sin2 10o + cos2 10o) + (sin2 20o + cos2 20o) + ...+ (sin240o + cos2 40o)
A = 1 + 1 + 1 + 1 = 4
hok tốt
\(\sin^210^o+\sin^220^o+\sin^230^o+\sin^240^o+\sin^250^o+\sin^260^o+\sin^270^o+\sin^280^o\)
\(=\cos^280^o+\cos^270^o+\cos^260^o+\cos^250^o+\sin^250^o+\sin^260^o+\sin^270^o+\sin^280^o\)
\(=\left(\sin^280^o+\cos^280^o\right)+\left(\sin^270^o+\cos^270^o\right)+\left(\sin^260^o+\cos^260^o\right)+\left(\sin^250^o+\cos^250^o\right)\)
\(=1+1+1+1\)
\(=4\)
Vậy ....