Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(I)\(\hept{\begin{cases}\left(x-3y\right)^2\ge\\\left(y-1\right)^2\ge0\\\left(x+z\right)^2\ge0\end{cases}voi..\forall x,y,z\in R}\) để có được cái biết:==> (I) phải đồng thời có đẳng thức
\(\Leftrightarrow\hept{\begin{cases}x=3\\y=1\\z=-3\end{cases}}\) thay vào A(x,y,z)=A(3,1-3)=3.3+2.1+(-3)=8
A=2(x+y)+3xy(x+y)+5x2y2(x+y)+2
A=2.0+3xy.0+5x2y2.0+2
A=2
B=xy(x+y)+2x2y (x+y)+5
B=xy.0+2x2y.0+5=5
a,Ta có 2(x+y)+3xy(x+y)+5x2y2(x+y)+4
Xg thay x+y=0 vào là dc bn nhó
Chúc bn hok tốt
Ta có:\(C=2\left(x-y\right)+13x^3y^2\left(x-y\right)+15xy\left(y-x\right)+1\)Thế \(x-y=0\) vào C ta được:
\(C=0+0+0+1\)
C = 0
\(\left(x+2y\right)^2\ge0;\left(y-1\right)^2\ge0;\left(x-z\right)^2\ge0\)
\(\Rightarrow\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2\ge0\)
theo đề:\(\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2=0\)
\(\Rightarrow\left(x+2y\right)^2=\left(y-1\right)^2=\left(x-z\right)^2=0\)
+)y-1=0=>y=1
ta có:x+2y=0=>x+2=0=>x=-2
Mà x-z=0=>x=z=>z=-3
Vậy x+2y+3z=(-2)+2+3.(-3)=3.(-3)=-27
\(2x\left(x-3y\right)-4y\left(x+2\right)-2\left(x^2-3y-4xy\right)\)
\(=2x^2-6xy-4xy+8y-2x^2-6y-8xy\)
\(=2x^2-10xy+8y-2x^2-14xy\)
\(=10xy+8y-14xy\)
\(=-4xy+8y\)
\(=-4.\left(\frac{-2}{3}.\frac{3}{4}\right)+8.\frac{3}{4}\)
\(=-4.\frac{-1}{2}+6\)
\(=2+6=8\)
\(2x^2-6xy-4xy-8y-2x^2+6y+8xy\)
\(=-2y-2xy\)
thay \(x=\frac{-2}{3};y=\frac{3}{4}\) vào biểu thức ta có
\(-2.\frac{3}{4}-2.\frac{-2}{3}\frac{3}{4}=\frac{-3}{2}+1=\frac{-3+2}{2}=\frac{-1}{2}\)
nếu có sai bn thông cảm
\(\left(x-3y\right)^2+\left(y-1\right)^2+\left(z+2\right)^2=0\Rightarrow\hept{\begin{cases}x-3y=0\\y-1=0\\z+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=3y\\y=1\\z=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=1\\z=-2\end{cases}}}\)
Thế vào A ta được \(2\left(3\right)+2\left(1\right)+\left(-2\right)=6\)