Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{6^{10}.27^5}{4^5.81^6}=\frac{\left(2.3\right)^{10}.\left(3^3\right)^5}{\left(2^2\right)^5.\left(3^4\right)^6}=\frac{2^{10}.3^{10}.3^{15}}{2^{10}.3^{24}}=\frac{2^{10}.3^{25}}{2^{10}.3^{24}}=\frac{3^{25}}{3^{24}}=3\)
b) \(\frac{72^3.54^2}{108^4}=\frac{\left(2^3.3^2\right)^3.\left(2.3^3\right)^2}{\left(2^2.3^3\right)^4}=\frac{2^9.3^6.2^2.3^6}{2^8.3^{12}}=\frac{2^{11}.3^{12}}{2^8.3^{12}}=\frac{2^{11}}{2^8}=2^3=8\)
c) \(\frac{27^4.2^3-3^{10}.4^3}{6^4.9^3.4}=\frac{\left(3^3\right)^4.2^3-3^{10}.\left(2^2\right)^3}{\left(2.3\right)^4.\left(3^2\right)^3.2^2}=\frac{3^{12}.2^3-3^{10}.2^6}{2^4.3^4.3^6.2^2}\)
= \(\frac{3^{12}.2^3-3^{10}.2^6}{2^6.3^{10}}=\frac{3^{12}.2^3}{2^6.3^{10}}-\frac{3^{10}.2^6}{2^6.3^{10}}=\frac{3^2}{2^3}-1=\frac{9}{8}-1=\frac{1}{8}\)
A= 3^10.( 11+5 ) / 3^9. 2^4
A= 3^10. 16 /3 ^9 . 16
A= 3^10/3^9= 3
B= 2^10. ( 13 +65) / 2^8.104
B= 2^10. 78/ 2^8.104
B= 2 ^10.2.39/ 2^8 .2.52
B= 2^11.39/ 2^9.52
B= 2 ^ 2. (39/ 52)
B= 4 . 39/52 = 3
C= (2^3.3^2)^3.( 2.3.3^2 )^2 / (2^2.3^3)^4
C= 2^9.3^6/ 2^2.3^2.3^4
C= 2^9.3^6/ 2^2.3^6
C= 2^9/2^2= 2^5=32
D= 11.3^29-3^30/ 2^2.3^28
D= 3^29.(1- 3)/ 2^2.3^28
D= 3^29.(-2)/ 2^2.3^28
D= 3. (-2/2^2)
D = 3. (-1/2)= -3/2
a, A = \(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
\(A=\frac{2^{10}\left(13+65\right)}{2^8.2^2.26}=\frac{2^{10}.78}{2^{10}.26}=\frac{78}{26}=3\)
Vậy A = 3
b, \(B=\frac{72^3.54^2}{108^4}=\frac{72^3.54^2}{\left(54.2\right)^4}=\frac{72^3.54^2}{54^4.2^4}=\frac{72^3}{54^2.2^4}=\frac{\left(8.9\right)^3}{\left(6.9\right)^2.2^4}\)
\(=\frac{\left(2^3\right)^3.9^3}{6^2.9^2.2^4}=\frac{2^9.9^3}{2^2.3^2.9^2.2^4}=\frac{2^9.9^3}{2^6.9^3}=\frac{2^9}{2^6}=2^3=8\)
Vậy B = 8
c, \(C=\frac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}=\frac{11.3^{29}.3^{30}}{2^2.3^{28}}=\frac{11.3^{29}.3.3^{29}}{2^2.3^{28}}=\frac{\left(11-3\right)3^{29}}{2^2.3^{28}}\)
\(=\frac{2^3.3^{29}}{2^2.3^{28}}=2.3=6\)
Vậy C = 6
d, \(D=\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}=\frac{\left(3.2^{18}\right)^2}{11.2^{35}-\left(2^4\right)^9}=\frac{3^2.2^{36}}{11.2^{35}-2^{36}}=\frac{3^2.2^{36}}{\left(11-2\right)2^{35}}=\frac{3^2.2}{9}=2\)
Vậy D = 2
Gợi ý
bn thực hiện phép tính tử mẫu bình thường , khi ra nhưng số trùng nhau bn gạch ra nháp cho đến nhưng số tối giản là ra nha
chúc bn
học tốt
A = \(\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
= \(\frac{3^{10}\left(11+5\right)}{3^9.2^4}\)
= \(\frac{3^{10}.16}{3^9.2^4}\)
= \(\frac{3^{10}.2^4}{3^9.2^4}=3\)
B = \(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
= \(\frac{2^{10}\left(13+65\right)}{2^8.104}\)
= \(\frac{2^{10}.78}{2^8.104}\)
= \(\frac{2^{10}.13.2.3}{2^8.2^3.13}\)
= \(\frac{2^{11}.13.3}{2^{11}.13}=3\)
Giải:A=723.542/(54.2)4=723.542/544.24=723/542.24=35.26/35.26=1. B=39.3.11+39.3.5/39.24=39.(33+15)/39.24=48/16=3. C=210.(13+65)/22.104=28.78/104=28.26.3/26.4=28.3/4=26.3=192. a)->2x=128:4=32.=>x=5(25=32) b)->2x+1=5(53=125)=>x=2. c)Ko có số nào ngoài 1 và 0 tồn tại dưới dạng(x-5)4=(x-5)6 ->Nếu x-5=0=>x=5 ->Nếu x-5=1=>x=6
0
( 2^3 x 3^2)^3 x ( 2 x 3^3 )^2 = 2^9 x 3^6 x 2^2 x 3^6 = 2^11 x 3^12
( 2^2 x 3^3 ) = 2^8 x 3^12 = 2^8 x 3^12
= 2^3 = 8
A=\(\frac{72^3.54^2}{108^4}=\frac{\left(2^3.3^2\right)^3.\left(2.3^3\right)^2}{\left(2^2.3^3\right)^4}=\frac{2^9.3^6.2^2.3^6}{2^8.3^{12}}=\frac{2^{11}.3^{12}}{2^8.3^{12}}=2^3=8\)
B= \(\frac{4^6.3^4.9^5}{6^{12}}=\frac{2^{12}.3^4.3^{10}}{2^{12}.3^{12}}=\frac{2^{12}.3^{14}}{2^{12}.3^{12}}=3^2=9\)
c) \(\frac{2^{13}+2^5}{2^{10}+2^2}=\frac{2^5\left(2^8+1\right)}{2^2\left(2^8+1\right)}=2^3=8\)
1.
\(\frac{72^3\times54^2}{108^4}=\frac{\left(8\times9\right)^3\times\left(27\times2\right)^2}{\left(27\times4\right)^4}=\frac{\left(2^3\times3^2\right)^3\times\left(3^3\times2\right)^2}{\left(3^3\times2^2\right)^4}=\frac{\left(2^3\right)^3\times\left(3^2\right)^3\times\left(3^3\right)^2\times2^2}{\left(3^3\right)^4\times\left(2^2\right)^4}=\frac{2^9\times3^6\times3^6\times2^2}{3^{12}\times2^8}=2^3=8\)
2.
\(\frac{4^6\times3^4\times9^5}{6^{12}}=\frac{\left(2^2\right)^6\times3^4\times\left(3^2\right)^5}{\left(2\times3\right)^{12}}=\frac{2^{12}\times3^4\times3^{10}}{2^{12}\times3^{12}}=3^2=9\)
3.
\(\frac{2^{13}+2^5}{2^{10}+2^2}=\frac{2^5\times\left(2^8+1\right)}{2^2\times\left(2^8+1\right)}=2^3=8\)