K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

a) \(x+b+c=-3+\left(-4\right)+2=-5\)

b) \(x+b+c=0+7+\left(-8\right)=-1\)

19 tháng 5 2017

a, Thay \(x=-3;b=-4;c=2\)vào biểu thức \(x+b+c\) ta có:

\(x+b+c=-3+\left(-4\right)+2\)

\(=-5\)

b, Thay \(x=0;b=7;c=-8\)vào biểu thức \(x+b+c\) ta có:

\(x+b+c=0+7+\left(-8\right)\)

\(=-1\)

5 tháng 4 2019

a) |-3| - 2.x = -7

<=> 3 - 2.x = -7

<=> -2.x = -7 - 3

<=> -2.x = -10

<=> x = (-10) : (-2)

<=> x = 5

=> x = 5

b) \(x+75\%=\frac{7}{8}\)

\(\Leftrightarrow x+\frac{75}{100}=\frac{7}{8}\)

\(\Leftrightarrow x+\frac{3}{4}=\frac{7}{8}\)

\(\Leftrightarrow x=\frac{7}{8}-\frac{3}{4}\)

\(\Leftrightarrow x=\frac{1}{8}\)

13 tháng 1 2016

Bài 1

1)x thuộc {-14;-4}

2)x thuộc {-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6}

3)x=8

Bài 2

a)(-a-b+c)-(-a-b-c)=-a-b+c+a+b+c=(-a+a)+(-b+b)+(c+c)=0+0+2c=2c

b)a=0

c)Các số nguyên x thỏa mãn -8<x<9 là: -7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8

Tổng của dãy số trên là : -7+-6+-5+-4+-3+-2+-1+0+1+2+3+4+5+6+7+8=8

 

24 tháng 8 2016

\(A=\left(a+b\right)+\left(c-d\right)-\left(c+a\right)-\left(b-d\right)\)

\(A=a+b+c-d-c-a-b+d\)

\(A=\left(a-a\right)+\left(b-b\right)+\left(c-c\right)+\left(d-d\right)\)

\(A=0\)

2 tháng 7 2019

a) Vì \(\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2+2018\ge2018\)

Dấu "=" xảy ra khi \(x-3=0\)

                                 \(\Rightarrow x=3\)

Vậy với nghiệm nguyên \(x=3\)thì phương trình đạt GTNN là A=2018

b)Vì \(\left|x-5\right|\ge0\)

\(\Rightarrow\left|x-5\right|+2016\ge2016\)

Dấu "=" xảy ra khi \(x-5=0\)

                                 \(\Rightarrow x=5\)

Vậy với nghiệm nguyên \(x=5\)thì phương trình đạt GTNN là B=2016

c) \(\text{C}=\frac{7}{x-3}\)nhỏ nhất khi \(x-3\)âm và đạt giá trị lớn nhất

\(\Rightarrow x-3< 0\)

Mà \(x\in Z\)

\(\Rightarrow x-3\le-1\)

Dấu "=" xảy ra khi \(x=-1+3=2\)

Vậy với nghiệm nguyên \(x=2\)thì phương trình đạt GTNN là \(\text{C}=\frac{7}{2-3}=-7\)

d)\(\text{D}=\frac{x+8}{x-5}=\frac{x-5+13}{x-5}=\frac{x-5}{x-5}+\frac{13}{x-5}=1+\frac{13}{x-5}\)

D nhỏ nhất khi \(1+\frac{13}{x-5}\)nhỏ nhất

\(1+\frac{13}{x-5}\)nhỏ nhất khi \(\frac{13}{x-5}\)nhỏ nhất

\(\frac{13}{x-5}\)nhỏ nhất khi \(x-5\)âm và đạt GTLN

\(\Rightarrow x-5< 0\)

Mà \(x\in Z\)

\(\Rightarrow x-5\le-1\)

Dấu "=" xảy ra khi \(x=-1+5=4\)

Vậy với \(x=4\)thì biểu thức đạt GTNN là \(\text{D}=1+\frac{4+8}{4-5}=1+\frac{12}{-1}=1-12=-11\)

~Học tốt^^~

2 tháng 7 2019

Phần kết luận: Vậy với x=...... thì "biểu thức"...

em sửa lại từ phương trình -> biểu thức nha :v a ghi vội nên không để ý

Bài 1 :

a)x.(x+3)=0

=>  x=0 hoặc x+3=0

ta có: x+3=0

          x   = -3

Vậy x=0 hoặc x=-3

b) (x-2). (5-x) = 0

=> x-2=0 hoặc 5-x =0

TH1   

x-2=0

x   =2

TH2

5-x  =0

  x   =5

Vậy x=5 hoặc x=2

Bài 2

a) Để A có GTNN thì | x: 9| + |y-5| < 0

=> A=1890 +|x:9|+ | y-5| < 1890

Dấu = chỉ xảy ra khi | x: 9|+|y-5|=0