Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a-b=3\Rightarrow a=3+b\) Thay vào B ta được :\(B=\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{\left(3-8\right)+b}{b-5}-\frac{12+3b}{9+b+3}=\frac{b-5}{b-5}-\frac{12+3b}{12+3b}=1-1=0\)
Vậy B = 0
Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{3c}{3d}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2b+3d}\left(đpcm\right)\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(\left\{\begin{matrix}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)
Ta có: \(\frac{a^3b^2c^{1930}}{a^{1935}}=\frac{a^3.a^2.a^{1930}}{a^{1935}}=\frac{a^{1935}}{a^{1935}}=1\)
Vậy \(\frac{a^3b^2c^{1930}}{a^{1935}}=1\)
Áp dụng TC DTSBN ta có :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\frac{a}{b}=1\Rightarrow a=b\) (1)
\(\Rightarrow\frac{b}{c}=1\Rightarrow b=c\) (2)
\(\Rightarrow\frac{c}{a}=1\Rightarrow c=a\) (3)
Từ (1);(2);(3) => \(a=b=c\) Thay vào \(\frac{a^3b^2c^{1930}}{a^{1935}}\) ta được :
\(\frac{a^3b^2c^{1930}}{a^{1935}}=\frac{a^3a^2a^{1930}}{a^{1935}}=\frac{a^{1935}}{a^{1935}}=1\)
Ta thấy:\(\left|3x+\frac{1}{7}\right|\ge0\)
\(\Rightarrow-\left|3x+\frac{1}{7}\right|\le0\)
\(\Rightarrow-\left|3x+\frac{1}{7}\right|+\frac{5}{3}\le\frac{5}{3}\)
\(\Rightarrow C\le\frac{5}{3}\)
Dấu= khi \(x=-\frac{1}{7}\)
Vậy MinC=\(\frac{5}{3}\) khi \(x=-\frac{1}{7}\)
Với mọi x ta có:
|x - 2001| = |2001 - x|
=> A = |x - 2002| + |2001 - x|
Với mọi x ta cũng có:
|x - 2002| + | 2001 - x| \(\ge\)|(x - 2002) + (2001 - x)|
A \(\ge\) |1|
A \(\ge\) 1
Dấu bằng xảy ra <=> (x - 2002).(2001 - x) \(\ge\) 0
=> x - 2002 \(\ge\) 0; 2001 - x \(\ge\) 0 (1)
hoặc x - 2002 \(\le\) 0; 2001 - x \(\le\) 0 (2)
Từ (1) => x > hoặc = 2002; x < hoặc = 2001 => x không có giá trị thoả mãn
Từ (2) => x < hoặc = 2002 ; x > hoặc = 2001 => 2001 \(\le\) x \(\le\) 2002
Vậy 2001 \(\le\) x \(\le\) 2002 thì A có giá trị nhỏ nhất = 1
Ta có : \(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)
Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow\left\{\begin{matrix}a=10k\\b=3k\end{matrix}\right.\)
Thay \(a=10k\) và \(b=3k\) vào biểu thức \(A=\frac{3\cdot a-2\cdot b}{a-3\cdot b}\), ta được :
\(A=\frac{3\cdot10k-2\cdot3k}{10k-3\cdot3k}=\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)
Vậy \(A=24\)
Ta có:A=\(\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+....+\left(\frac{1}{2}\right)^{99}\right]\)
\(\frac{1}{2}A\)=\(\frac{1}{2}\)\(\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{4}\right)^4+....+\left(\frac{1}{2}\right)^{99}\right]\)
\(\frac{1}{2}A\)=\(\left[\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+\left(\frac{1}{2}\right)^5+...+\left(\frac{1}{2}\right)^{100}\right]\)
\(\frac{1}{2}A-A\)=\(\left[\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+\left(\frac{1}{2}\right)^5+...+\left(\frac{1}{2}\right)^{100}\right]\)-\(\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+....+\left(\frac{1}{2}\right)^{99}\right]\)
\(-\frac{1}{2}A\)=\(\left(\frac{1}{2}^{100}\right)-\frac{1}{2}\)
\(-\frac{1}{2}A\)=\(-\frac{1}{2}\)
A=\(-\frac{1}{2}:\left(-\frac{1}{2}\right)\)
A=1
Chúc bạn học tốt!
Áp dụng tc dãy tỉ số bằng nhau ta có
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)
\(\Rightarrow a+b+c=a+b-c\)
\(\Rightarrow a+b+c-a-b+c=0\)
\(\Rightarrow2c=0\)
\(\Rightarrow c=0\)
\(H=-\left|x\right|+7\)
Vì \(-\left|x\right|\le0\Rightarrow-\left|x\right|+7\le7\)
Dấu "=" xảy ra khi \(\left|x\right|=0\)
\(\Rightarrow x=0\)
Vậy \(Max_H=7\) khi \(x=0.\)
\(K=-\left|x-5\right|-2\)
\(-\left|x-5\right|\le0\Rightarrow-\left|x-5\right|-2\le-2\)
Dấu "=" xảy ra khi \(\left|x-5\right|=0\)
\(\Rightarrow x-5=0\)
\(\Rightarrow x=5\)
Vậy \(Max_K=-2\) khi \(x=5.\)
\(E=7-\left|x+4\right|\)
\(-\left|x+4\right|\le0\Rightarrow7-\left|x+4\right|\le7\)
Dấu "=" xảy ra khi \(\left|x+4\right|=0\)
\(\Rightarrow x=-4\)
Vậy \(Max_E=7\) khi \(x=-4.\)
\(M=\left|x\right|+5\)
Vì \(\left|x\right|\ge0\Rightarrow\left|x\right|+5\ge5\)
Dấu "=" xảy ra khi \(\left|x\right|=0\)
\(\Rightarrow x=0\)
Vậy \(Min_M=5\) khi \(x=0.\)
2 câu kia tương tự.
H = -|x| + 7
Có : \(-\left|x\right|\le0\)
<=> \(-\left|x\right|+7\le7\)
=> MaxH = 7
<=> -|x| = 0
<=> x = 0
K = -|x - 5| - 2
Có : \(-\left|x-5\right|\le0\)
<=> \(-\left|x-5\right|-2\le-2\)
=> MaxK = -2
<=> -|x - 5| = 0
<=> x = 5
E = 7 - |x + 4|
Có : \(\left|x+4\right|\ge0\)
<=> \(7-\left|x+4\right|\le7\)
=> MaxE = 7
<=> |x + 4| = 0
<=> x = -4
Ta có : \(a-b=7\Rightarrow a=b+7\) (1)
Thay (1) vào \(\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}\) ta có:
\(\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}=\frac{3\left(b+7\right)-b}{2\left(b+7\right)+7}+\frac{3b-b-7}{2b-7}\)
\(=\frac{3b+21-b}{2b+14+7}+\frac{2b-7}{2b-7}\)
\(=\frac{2b+21}{2b+21}+1\)
\(=1+1\)
\(=2\)
Vậy \(\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}=2\)
cảm ơn bạn nha