K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 6 2024

Biểu thức A không có min/ max

Biểu thức B là sao hả bạn?

4 tháng 7 2015

\(A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\cdot3^5+\left(\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}+\frac{1}{3^8}\right)\cdot3^9+...+\left(\frac{1}{3^{97}}+\frac{1}{3^{98}}+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\cdot3^{101}\)=\(\left(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\right)+\left(\frac{3^9}{3^5}+\frac{3^9}{3^6}+\frac{3^9}{3^7}+\frac{3^9}{3^8}\right)+...+\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)

=(3+32+33+34)+(3+32+33+34)+...+(3+32+33+34)

Tổng trên có số số hạng là(mỗi ngoặc là 1 số hạng)

(101-5):4+1=25(số hạng)

=>A=25.(3+32+33+34)=25.120=3000

3 tháng 3 2017

ko biet

12 tháng 6 2020

Với \(x=100\)\(\Rightarrow x-1=99\)

Ta có: \(C=99+99x+99x^2+99x^3+.......+99x^n+99x^{n+1}\)

\(=x-1+\left(x-1\right).x+\left(x-1\right).x^2+........+\left(x-1\right).x^n+\left(x-1\right).x^{n+1}\)

\(=x-1+x^2-x+x^3-x^2+......+x^{n+1}-x^n+x^{n+2}-x^{n+1}\)

\(=-1+x^{n+2}=x^{n+2}-1\)

Thay \(x=100\)vào biểu thức ta được:

\(C=100^{n+2}-1\)

5 tháng 11 2017

Cách tìm BCNN:

  1. Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
  2. Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.
  3. Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN cần tìm.