K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

a, A = (x-1)(x+6) (x+2)(x+3)

= (x^2 + 5x -6 ) (x^2 + 5x + 6)

Đặt t = x^2 +5x 

A= (t-6)(t+6)

= t^2 - 36

GTNN của A là -36 khi và ck t= 0

<=> x^2 +5x = 0

<=> x=0 hoặc x=-5

Vậy...

29 tháng 8 2018

chị mua sách giải về tham khảo nha!

chúc chị hok tốt!

29 tháng 8 2018

\(A=x^5-70x^4-70x^3-70x^2-70x+34\)

\(\Rightarrow A=x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+34\)

\(A=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+34\)

\(A=71+34\)

\(A=105\)

8 tháng 12 2019

a)Với  x \(\ne\)-1

Ta có: x2 + x = 0

=> x(x + 1) = 0

=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=-1\left(ktm\right)\end{cases}}\)

Với x = 0 => A = \(\frac{0-3}{0+1}=-3\)

b) Ta có: B = \(\frac{3}{x-3}+\frac{6x}{9-x^3}+\frac{x}{x+3}\)

B = \(\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)

B = \(\frac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\)

B = \(\frac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)

B = \(\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}\)

B = \(\frac{x+3}{x-3}\)

c)  Với x \(\ne\)\(\pm\)3; x \(\ne\)-1

Ta có: P = AB = \(\frac{x-3}{x+1}\cdot\frac{x+3}{x-3}=\frac{x+3}{x+1}=\frac{\left(x+1\right)+2}{x+1}=1+\frac{2}{x+1}\)

Để P \(\in\)Z <=> 2 \(⋮\)x + 1

<=> x + 1 \(\in\)Ư(2) = {1; -1; 2; -2}

<=> x \(\in\){0; -2; 1; -3}

20 tháng 10 2016

A= (2x-1)2-(2x+3)(x-2)-2(x+2)(x+5)

A= 4x2-4x+1-(2x2-x-6)-2(x2+7x+10)

A=4x2-4x+1-2x2+x+6-2x2-14x-20

A= -17x-13

Thay x= -3, ta có:

A= -17.3-13=-51-13=-64

21 tháng 10 2020

Đầu bài cho là x=-3 s xuống phần tl lại là 3

10 tháng 2 2018

\(\text{a, ĐKXĐ: }\hept{\begin{cases}x+3\ne0\\x-3\ne0\\3x^2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne\mp3\\x\ne0\end{cases}}\)

\(A=\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(=\left[\frac{\left(3-x\right)\left(x+3\right)^2}{\left(x+3\right)\left(x+3\right)\left(x-3\right)}+\frac{x}{x+3}\right]\cdot\frac{x+3}{3x^2}\)

\(=\frac{x-x-3}{x+3}\cdot\frac{x+3}{3x^2}\)

\(=-\frac{1}{x^2}\)

b, với x=\(-\frac{1}{2}\)ta có:

\(A=-\frac{1}{\left(-\frac{1}{2}\right)^2}=-4\)

c, Để A<0 thì \(-\frac{1}{x^2}< 0\text{ mà }x^2>0\left(\text{vì x khác 0 ĐKXĐ}\right)\)

Với x khác 0 thì thỏa mãn!

10 tháng 2 2018

a)   ĐKXĐ:  \(x\ne\pm3\)

\(A=\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(=\left(\frac{3-x}{x+3}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(=\left(\frac{3-x}{x-3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(=\frac{\left(3-x\right)\left(x+3\right)+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{3x^2}\)

\(=\frac{3\left(3-x\right)}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{3x^2}\)

\(=-\frac{1}{x^2}\)

4 tháng 12 2017

a)Trong biểu thức A có (3-x)^2=(x-3)^2 nên ta có:

\(A=\left(2x+1\right)^2+2\left(2x+1\right)\left(x-3\right)+\left(x-3\right)^2=\left(2x+1+x-3\right)^2=\left(3x-2\right)^2\)

\(B=\frac{1-4x}{\left(4x-1\right)\left(3x-2\right)}=-\frac{4x-1}{\left(4x-1\right)\left(3x-2\right)}=\frac{-1}{3x-2}\)

b)Thay x=1/3 vào biểu thức A ta có:

\(A=\left(3.\frac{1}{3}-2\right)^2=\left(1-2\right)^2=\left(-1\right)^2=1\)

c)\(A.B=\left(3x-2\right)^2.\frac{-1}{3x-2}=-\frac{\left(3x-2\right)^2}{3x-2}=-\left(3x-2\right)=2-3x\)